Interdisciplinary Biotechnological Advances

Satarupa Dey Sayan Bhattacharya *Editors*

Biotechnological Interventions in the Removal of Emerging Pollutants

Interdisciplinary Biotechnological Advances

Series Editors

Jayanta Kumar Patra, Research Institute of Integrative Life Sciences Dongguk University Ilsandong, Goyang, Kyonggi-do, Korea (Republic of) Gitishree Das, Research Institute of Integrative Life Sciences Dongguk University Goyang, Korea (Republic of) This series is an authoritative resource that explains recent advances and emerging directions in biotechnology, reflecting the forefront of research clearly and reliably, without excessive hype. Each volume is written by authors with excellent reputations and acknowledged expertise in the topic under discussion. The volumes span the entire field from an interdisciplinary perspective, covering everything from biotechnology principles and methods to applications in areas including genetic engineering, transgenic plants and animals, environmental problems, genomics, proteomics, diagnosis of disease, gene therapy, and biomedicine. The significance of these applications for the achievement of UN Sustainable Development Goals is highlighted. The series will be highly relevant for Master's and PhD students in Biotechnology, Nanochemistry, Biochemical Engineering, and Microbiology, medical students, academic and industrial researchers, agricultural scientists, farmers, clinicians, industry personnel, and entrepreneurs.

Satarupa Dey • Sayan Bhattacharya Editors

Biotechnological Interventions in the Removal of Emerging Pollutants

Editors Satarupa Dey Department of Botany Shyampur Siddheswari Mahavidyalaya Howrah, West Bengal, India

Sayan Bhattacharya School of Ecology and Environment Studies Nalanda University Rajgir, Bihar, India

ISSN 2730-7069 ISSN 2730-7077 (electronic) Interdisciplinary Biotechnological Advances ISBN 978-981-97-9921-3 ISBN 978-981-97-9922-0 (eBook) https://doi.org/10.1007/978-981-97-9922-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025, corrected publication 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

We dedicate this book to our parents, family, and teachers for their guidance and motivation

Preface

Emergent pollutants are broadly categorized as a range of inorganic and organic compounds, which have detrimental effects on the well-being of living things. Different kinds of pollutants are produced by different human activities, and consequently, these pollutants have impacted public health and degraded biodiversity in different levels. The examples of emergent pollutants are pharmaceuticals, endocrine disruptors, heavy metals, antibiotics, personal care items produced by various sectors, etc. The majority of these emerging pollutants are released into surface water, where they contaminate ground water, soil, sediments, and seas. Both inorganic and biological treatments can be used to remove or degrade these pollutants from terrestrial and aquatic environments. Numerous microorganisms can be utilized effectively in bioremediation of emergent contaminants, through the processes of removal, breakdown, detoxification, and immobilization of contaminants. Simultaneously, enzyme biotechnology has also evolved as cost-effective lowenergy requiring and eco-friendly technology, which can be used for remediation of various pollutants. However, bioremediation is not always adequate to treat emergent pollutants completely. Rather, a combination of both physical and chemical treatment, especially the applications of nanotechnology, can be effective in sustainable removal of the pollutants.

This book comprises 26 chapters, which address different perspectives related to emergent pollutants, the health hazard caused by them, and their bioremediation mechanisms. This book not only deals with the various health issues caused by emergent pollutants and their regulatory approaches, it also highlights the latest advancements in bioremediation techniques, exploring how microorganisms can break down various pollutants and examines the future potential of bioremediation to reduce global pollution. It will be a valuable resource for policymakers, educators, researchers, scientists, as well as undergraduate and graduate students in agriculture, forestry, ecology, soil science, and environmental sciences.

We extend our heartfelt gratitude to all the contributing authors and reviewers whose invaluable support has been instrumental in shaping this book. We sincerely thank the authors for their outstanding efforts in writing the informative chapters. Our appreciation also goes to the reviewers for their crucial inputs that have

viii Preface

significantly improved the chapters. We would like to convey our sincere thanks to the entire team of Springer Nature for giving us the opportunity to edit this book. We also express our gratitude to our mentors, teachers, and students for their motivation. Their support has provided us with the assurance and strength to complete this project.

Finally, we thank our colleagues, family, and friends for their encouragement and support throughout the preparation of this book.

Howrah, West Bengal, India Rajgir, Bihar, India Satarupa Dey Sayan Bhattacharya

Acknowledgment

We thank and express our sincere gratitude to all the authors and reviewers for their valuable contributions to this book. We appreciate their timely submissions and necessary corrections. We express our gratitude to the publishing team of Springer Nature for providing us the opportunity to edit this book. We convey our thanks to our colleagues for giving us the confidence and strength to accomplish this task. Finally, we would like to convey our gratitude to our family members for their constant support and encouragement.

Howrah, West Bengal, India Rajgir, Bihar, India Satarupa Dey Sayan Bhattacharya

Contents

1	Health and Environment Vishal Das, Kongkana Goswami, Sangeeta Biswas, Sosanka P. Sandilya, and Pobi Gogoi	1
2	Evaluating Regulatory Approaches to Emerging Pollutants	19
3	Toxicity and Health Impact of Emergent Pollutants and Sustainable Management as Bioremediation	37
4	Toxicity and Health Impacts of Emerging Pollutants	55
5	Sustainable and Resilient Urban Development Using Environmental Planning Tools. Shreya Proch, Vrinda Sharma, and Mandeep Kour	81
6	Microalgae-Based Bioremediation: A Sustainable Approach for the Removal of Emergent Pollutants. Charu Deepika, Gabriele Frascaroli, Anusha Gowri, and Alla Silkina	101
7	Agro-(Bio)Microplastics: Extraction, Identification, and Quantification Methodologies Laura Hernández Bautista and Alma Berenice Jasso-Salcedo	141
8	Coupling Bioremediation Strategies for Eradication of Soil Organic Pollutants. Aditi Roy Priva Dubey Poornima Vainayee, and Suchi Sriyastaya	167

xii Contents

9	Microbial Degradation of Polyaromatic Hydrocarbons in Marine and Coastal Ecosystems	189
10	Contribution of Cyanobacteria and Microalgae for the Removal of Emergent Pollutants from Wastewater: A Review	207
11	Revitalizing Ecosystems: A Sustainable Approach to Mitigating Arsenic Toxicity. Neelanjan Dutta, Amit Ghosh, Subhendu Chakrabarty, and Amlan Das	227
12	Microplastic Pollution: Unveiling the Sources, Pathogenesis, and Effective Remediations Amit Ghosh, Bhupali Kalita, Jyotirmay Das, Partha Pratim Das, Nabajyoti Das, Subhendu Chakrabarty, Amlan Das, and Neelanjan Dutta	241
13	Heavy Metals (As, Cd, Hg, Pb) Contamination and Bioaccumulation in Estuarine and Marine Ecosystems with Special Reference to Asia. Arkajyoti Shome, Sayan Bhattacharya, Deep Chakraborty, and Satarupa Dey	271
14	Possible Strategies for Oil Spill Removal from Mangrove Water Emphasizing Bioadsorption Strategies and Its Limitations	289
15	Removal of Emerging Inorganic Wastewater Pollutants Using Fluidized Bed Bioreactor: A Review Nikila Bhutia, Priyadarshika Adhikari, and Neelanjan Dutta	301
16	Advanced Strategies in Microbial Bioremediation of Dyes from Industrial Wastewater Rupesh Dutta Banik, Sibashish Baksi, and Pritha Pal	321
17	Mycoremediation: A Sustainable Approach to Curb Emerging Pollutants Venkata Kanaka Srivani Maddala, Supriya Chatla, and Lurdhumary Kunduri	347
18	Earthworms: The Environmentally Preferred Bioengineers for Managing Heavy Metals. Urmila, R. K. Gupta, Shweta Sharma, and Rahul Kumar	365

Contents xiii

19	Cellulase Enzymes: Transforming Lignocellulosic Waste into Sustainable Solutions	385
20	Fungal Oxidoreductases: Efficient Tool for Eco-Friendly and Sustainable Pesticide Bioremediation Tina Roy, Chandana Paul, Nilasish Pal, and Nirmalendu Das	403
21	Microbial Fuel Cell as Biotechnological Interventions in Removal of Emergent Pollutants: A Comprehensive Review	437
22	Removal of Emerging Contaminants Microplastics by Using Biochar Technology, a Review	471
23	Diatoms: An Important Biomonitoring and Bioindicator Tool of Aquatic Ecosystems with Potential in Novel Nanomaterial Synthesis and Downstream Applications in Pollutant Removal Rohan Kr Biswas, Arghadeep Das, and Avik Kumar Choudhury	495
24	Engineered Nanomaterials and Associated Threats in the Environment Risk Assessment Strategies	515
25	Ecotoxicological Footprint of Agricultural Nanoparticles: Balancing Productivity with Environmental Safety Saswati Bhattacharya and Anirban Kundu	539
26	Ecotoxicity Potential of Carbon and Metal Nanoparticles: Delving into the Darker Realm Bidisha Ghosh, Subhasis Sarkar, and Santanu Paul	561
Del	rrection to: Ecotoxicity Potential of Carbon and Metal Nanoparticles: ving into the Darker Realm	C1
Ind	lex	583

Chapter 1 An Overview and Impact of Emerging Pollutants on Human Health and Environment

1

Vishal Das, Kongkana Goswami, Sangeeta Biswas, Sosanka P. Sandilya, and Pobi Gogoi

Abstract Emerging pollutants (EPs) have been identified and quantified in living things and various environmental substances in recent years. Basically, chemicals that are either man-made or naturally occurring and have the potential to enter the environment and have a negative influence on both the ecosystem and human health are referred to as emerging pollutants. However, the harmful effects of environmental exposure on the general population are largely unknown and less covered. They are not currently being monitored and analyzed in the environment, although they contribute a major threat to the ecosystem and to human health, as well as causing environmental harm. Perfluorinated chemicals, by-products of water treatment, gasoline additives, pesticides, pharmaceuticals and personal care products, nanomaterials, human and veterinary medications, and UV filters, are some of the most common developing toxins. Numerous pollutants have been also reported and considered to increase the risk of cancer. Moreover, the EPs, also referred to as micropollutants, cause major harm to the environment and to human health and have made them a significant concern for the entire world's population in recent years. The existence of EP in the environment, its toxicological effects on health, and future perspectives regarding potential removal and treatment options including practical considerations, recent novel processes, new avenues, and solution strate-

V. Das (⋈) · K. Goswami

Department of Medical Laboratory Technology, School of Health Sciences, The Assam Kaziranga University, Jorhat, Assam, India

e-mail: vishal@kazirangauniversity.in

S. Biswas

Department of Zoology, Royal School of Life Sciences, The Assam Royal Global University, Guwahati, Assam, India

S. P. Sandilya

Department of Microbiology, School of Health Sciences, The Assam Kaziranga University, Jorhat, Assam, India

P. Gogoi

Department of Zoology, DCB Girls' College, Jorhat, Assam, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

S. Dey, S. Bhattacharya (eds.), *Biotechnological Interventions in the Removal of Emerging Pollutants*, Interdisciplinary Biotechnological Advances, https://doi.org/10.1007/978-981-97-9922-0_1

V. Das et al.

gies will be comprehensively discussed in this book chapter. Well, EPs are constantly being reported all over the world and considered as a major threat to the mankind and environment that needs to be addressed immediately on a global scale. The current study summarizes the overall impact and effect on emerging pollutants on human health and environment.

Keywords Emerging pollutants (EPs) · Human health · Toxicological effects

1.1 Introduction

The term "emerging pollutants" describes compounds that have just recently been discovered or have gained attention because of their environmental presence and their effects on ecosystems and human health. Numerous sources, including as industrial operations, farming practices, medications, personal care items, and more, can produce these contaminants (Gavrilescu et al. 2015). Research and regulatory efforts have focused on the effects of new contaminants on human health and the environment, as this is an increasingly pressing concern. Emerging pollutants are defined as naturally occurring or man-made substances that are not typically seen in the environment, but have the potential to do so and may have negative effects on the environment and human health that are either suspected or confirmed. It consists of items that are regularly used in homes, businesses, and other human endeavors (such as personal care and medications, plasticizers and gasoline additives, and degradation products and surfactants) (Fig. 1.1) (Arvaniti and Stasinakis 2015; Vasilachi et al. 2021).

These chemicals are being used in greater quantities in industry, transportation, agriculture, and urbanization, which are causing an increase in their hazardous waste and nonbiodegradable material levels in the environment. Furthermore, there is a lack of comprehensive and reliable epidemiological data regarding human exposure, serum and tissue concentrations, hazards to human and ecological health, and their behavior and fate in the global environment (Gavrilescu et al. 2015).

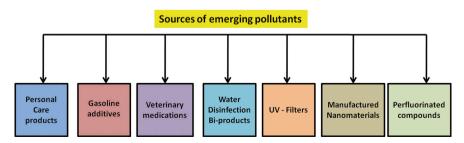


Fig. 1.1 Some of the emerging pollutants that have gained attention because of their environmental presence and their effects on ecosystems and human health

Environmental pollution ranks among the most difficult issues that face people on a daily basis. Concerning developments occurred in the quality of the environment as a result of industrialization and urbanization. Different forms of pollutants, such as persistent organic (pharmaceuticals, endocrine disrupting agents, personal care products, pesticides) and inorganic (e.g., heavy metals) are severe concerns globally that effects both the plants and animals (Bunke et al. 2019). "EPs" are chemicals that have the ability to bioaccumulate, persist in the environment, and pose a threat to human health and safety. Some of the effects of these substances include inappropriate growth, decreased fertility and reproductive health, delayed neurological development, deterioration of wildlife species, degradation of aquatic ecosystems, and possibly even immune system damage. It is crucial to emphasize that most toxins that are emerging are not newly created or have only recently entered the environment (Rodriguez-Narvaez et al. 2017). Emerging pollutants are coming from nowhere; rather, they are already here in detectable quantities, posing an irreversible threat to both human health and the ecosystem. It was previously present in extremely low concentrations, but as public knowledge of its adverse impact on the environment grows, the term "emerging pollutant" has been employed by the researchers.

This chapter summarizes and emphasizes the information on EPs and its impact on environment, a topic that has gotten a lot of attention lately. A study on emerging pollutants or emerging contaminants was examined in this work, paying particular attention to the materials' occurrence, environmental fate, and toxicity evaluation. Emerging pollutants are the threat to human health and the environment, and as a result, the study offers helpful insights to know and study about its impact on human and environment based on some thorough reports and comprehensive studies.

1.2 Perfluorinated Compounds

PFCs are aliphatic compounds with one or more carbon (C) atoms on which fluorine (F) atoms have completely replaced all hydrogen (H) atoms. The CnF2n+1- moiety is connected to a variety of functional groups in PFCs. Sulfonic acid (SO3H), carboxylic acid (-COOH), and sulfonamides (-SO2NH2) are the three main functional groups (). Produced since the late 1940s, perfluorinated compounds (PFCs) consist of a hydrophobic alkyl chain that is fully fluorinated and connected to a hydrophilic end group. The most important representative PFCs are perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA), and their salts. PFCs pile up in the environment and are biomagnified by the food chain since they are incredibly stable and do not biodegrade (Morikawa et al. 2006). Compared to other environmental pollutants, PFCs are ubiquitous and can be found in blood samples from both industry employees and the general public at comparatively high concentrations. More significantly, their presence in breast milk and umbilical cord blood suggests that fetal development may be the beginning of a lifetime exposure to PFCs (Lee et al. 2013). PFC exposure is attributed to the existence of these species

V. Das et al.

in blood, food, consumer products, indoor chemicals, and occupational exposure, per a study on PFCs (Wu et al. 2015).

Numerous studies have demonstrated that long-chain PFCs—that is, PFOA and PFOS—have longer elimination half-lives and are more bioaccumulative than short-chain PFCs, such as CnF2n+1COOH, where $n \ge 7$, and CnF2n+1-SO3H, where $n \ge 6$ (D'Hollander et al. 2010). The major manufacturer of PFOA and PFOS, the 3M Company, phased out production of these chemicals in 2000 due to wide-spread concern about the potential health and environmental effects of long-chain PFCs. This concern also facilitated regulatory initiatives in many countries to reduce the environmental release of these PFCs (Olsen et al. 2009).

Numerous toxicological consequences, such as altered thyroid hormone, hepatotoxicity, changes in glucose and cholesterol, toxicity to the reproductive and developmental systems, and carcinogenic effects, have been linked to PFAS exposure in epidemiological and experimental investigations (Rodriguez-Jorquera et al. 2019; Lau et al. 2007). The most prevalent malignancy among Chinese women is breast cancer. In the world, China is the country that accounts for 9.6% of all breast cancer fatalities and 12.2% of new diagnoses. Breast cancer risk factors include early menarche, late menopause, postmenopausal obesity, smoking, alcohol consumption, and excessive fat intake, in addition to genetic variables including mutations in BRCA-1/2. Fan L et al. in the year 2014 reported that less than one-third of cases are explained by known risk factors, and environmental exposure and lifestyle choices can significantly affect a person's risk of developing breast cancer (Fan et al. 2014). Numerous epidemiological studies have been conducted in Europe and the United States to evaluate the dangers of PFAS exposure and breast cancer (Fan et al. 2014). According to a recent study, perfluoro-n-tridecanoic acid (PFTrDA) was adversely related with breast cancer in Chinese women, but the plasma concentrations of Perfluorooctanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA) were positively associated with breast cancer. Breast cancer that was ER-, PR-, and HER2-positive was more likely to be linked to PFOA (Li et al. 2022). In their investigation, Sevyedsalehi MS et al. found a link between kidney cancer and total PFAS exposure, as well as a link between high PFAS concentrations and testicular cancer (Seyyedsalehi and Boffetta 2023). Many studies on human infertility, lactation, and semen quality have examined the relationship between the blood level of PFCs and reproductive failure in the general population. Fei et al. looked at the possibility that PFC exposure and related hormone disruptors may make infertility more likely (Fei et al. 2009). A study conducted by Joensen et al. suggested that, with the exception of primipara, PFOS may reduce the women's ability to lactate. Because multiparous women had previously breastfed and because excretion could lower PFOS serum levels, the connection between the PFOS serum level and multiparous women was not as strong. Joensen et al. looked at a possible relationship between testicular function, semen quality, and perfluoroalkyl acids (PFAAs) (Joensen et al. 2009).

The possible links between the levels of PFOA and PFOS in the serum and the prevalence of thyroid disease have been highlighted by other research. In order to determine whether there was a significant correlation between the serum and tissue concentrations of PFCs, Pirali et al. measured the PFOS and PFOA levels among 28

participants who underwent thyroid surgery for benign diseases (7 for Graves' disease and 15 for multinodular goiters) and malignant thyroid diseases (5 for papillary carcinoma and 1 for follicular carcinoma) (Pirali et al. 2009). The Northeastern states with the highest prevalence of thyroid cancer were the main locations where the higher PFAS levels were found. These findings support closer monitoring of PFAS exposure among local populations and provide guidance for future research on the possible consequences of exposure on the thyroid gland (Alsen et al. 2003).

1.3 Gasoline Additives

Chemical compounds or substances known as gasoline additives are added to gasoline in order to improve performance, lower emissions, increase fuel efficiency, and prevent engine deposits. These additives have multiple uses and are specifically designed to meet the needs of contemporary combustion engines.

From the 1920s to the late 1980s, lead-based antiknock additive mixes were widely employed to raise the octane ratings of gasoline. These mixtures contained the volatile organic compounds 1,2-dichloroethane (DCA) and 1,2-dibromoethane (ethylene dibromide; EDB). With federal maximum contaminant levels (MCLs) of 0.05 and 5 μ g/L, respectively, EDB and DCA are likely human carcinogens. In the United States, lead is no longer used in gasoline, although EDB and DCA are still present in the environment (Falta et al. 2005).

In groundwater-dependent public drinking water systems in the United States, EDB and DCA are two of the most frequently found contaminants (EPA-815-R-03-006; U.S. EPA 2003). Generally, discharges from industries (DCA) or agriculture (EDB) are blamed for groundwater pollution by these chemicals. However, more than 80% of the EDB was consumed as an additive for gasoline in the 1970s. Often utilized as a solvent, DCA is a common industrial chemical feed-stock (Falta et al. 2005).

In many nations, using leaded gasoline is still standard procedure. Tetraethyl lead (Pb (C2H5)4) is the most widely used lead compound, and it is used to increase the gasoline's octane level. Greater thermodynamic efficiency is achieved by using engines with higher compression ratios, which are made possible by higher octane fuel. Manufacturers are able to obtain more power and fuel efficiency out of lighter, smaller engines thanks to this increased efficiency. However, using this gasoline results in a lot of undesired emissions of particulates, carbon monoxide, and lead. For these reasons, a number of nations have worked to alter the usage of leaded gasoline in an effort to lessen or completely prevent the unintended pollution emissions that come with the rising use of gasoline (Bravo et al. 2006).

This substance is present in gasoline and is a member of the aromatic family. It is also utilized as a solvent. Exposure to toluene, whether acute (short-term) or chronic (long-term), can be hazardous to humans and animals. Following inhalation, symptoms include headaches, nausea, exhaustion, headaches, dizziness, and upper respiratory tract irritation (ATSDR 2017) (WHO 2016).

There are over 500 components in gasoline, including methyl tert-butyl ether (MTBE), 1,3-butadiene, and benzene, all of which are known or suspected carcinogens. Due to their high volatility and solubility, methyl tertiary butyl ether (MTBE) and ethyl tertiary butyl ether (ETBE) rapidly disperse in the environment and have low biodegradability. Consequently, their presence in surface waters is widespread even at low quantities of µg/L (Apetroaei et al. 2020). The most popular oxygenated bunker, MTBE, is being sporadically employed as a new unleaded gasoline additive, especially in developing areas (Mennear 1997). Tetraethyl lead as an antiknock species can be replaced by MTBE, which also improves the octane additive used in gasoline to increase its burning efficiency and reduce carbon monoxide and other dangerous chemicals, such benzene and ozone, in vehicle exhaust (McGregor 2006). According to research on animals, MTBE can damage the kidney, liver, immune system, and central nervous system in addition to causing cancer of the testicles, uterus, and kidneys (Mennear 1997). In an analytical study, Joseph and Weiner found a correlation between the levels of MTBE in the air and the following symptoms: skin rash, palpitations, allergy, otitis media, cough, headache, throat stimulation, hypersensitive rhinitis, upper respiratory transmissible illness, sicchasia, dizziness, wheezing, anxiety, and insomnia (Joseph and Weiner 2002).

Strong alkylating chemicals like chloroethane are utilized as industrial refrigerant, topical anesthetics, polymers, pigments, and gasoline additives (Fishbein 1979). Naturally occurring and extremely lipophilic, bromoethane finds usage in both industrial and pharmacological settings. Its ability to cross the blood–brain barrier is noteworthy (Klassen 1996). According to research conducted by the National Toxicology Program (NTP), uterine tumor incidence increased in B6C3F1 mice exposed to these chemicals for several weeks of inhalation (NTP 1989a, b). Aoyama et al. (2005) recently investigated the direct estrogenic effects of bromoethane in human Ishikawa cells and in ovariectomized B6C3F1 mice. For a duration of 3 days, mice were administered 0, 100, 500, or 1000 mg kg⁻¹ of bromoethane.

1.4 Personal Care Products and UV Filters

Personal care products (PCPs) are a broad category of everyday home chemicals used for cleaning, cosmetics, and wellness. Products that easily expose people include those for hair and skin care, baby care, UV blocking lotions, facial cleansers, insect repellents, perfumes, fragrances, soap, detergents, shampoos, conditioners, toothpaste, and more.

These consist of, among other things, UV filters, scents, disinfectants, and insect repellents. Due to their existence and detrimental effects on aquatic ecosystems, particularly in relation to endocrine disruption and reproductive diseases, several of them are regarded as chemicals of growing concern. Studies done in 2017 has reported that, 72 PCPs that have been identified as emerging contaminants in 30 different nations back then, with concentrations ranging from 0.029 ng/L to 7.811×10^6 ng/L. The most often reported categories were sunscreens, antiseptics,

and fragrances. As anticipated, wastewater treatment plant effluents included 64 PCPs total—more than twice as much as those identified in surface water and groundwater combined—than any other source. This finding provides proof of the anthropological input of PCPs to water bodies (Montes-Grajales et al. 2017).

Oxybenzone is widely used as a photo-stabilizer to reduce color and odor changes in sunscreen preparations at doses up to 6% and primarily as a short-wave UVA light absorber (320–340 nm) at concentrations up to 290–320 nm. According to the reviewed data, oxybenzone is present worldwide in human urine, serum, and breast milk in addition to being present in water, soil, sediments, sludge, and biota. It is not as effective as avobenzone, titanium dioxide, and/or zinc oxide as a sunscreen active in preventing UVA rays. This substance is a known contact and photocontact allergen that can cause contact urticaria and, to a lesser extent, contact-mediated anaphylaxis in people. It has also been connected to Hirschsprung's illness (DiNardo et al. 2018).

PCPs are present in human bodies at all stages of life, including intrauterine development. Inhalation, cutaneous contact, ingestion, and absorption are the direct routes of exposure; product use and environmental contamination are the indirect pathways (Heudorf et al. 2007). The estimated daily cutaneous route of exposure to titanium dioxide (TiO2) is between 2.8 and 21.4 mg/person/day, with toothpaste and sunscreen being major contributors to this exposure. In addition, it was calculated that the toothpaste caused ingestion of 0.15–3.9 mg TiO2/day. An estimated 35% of produced TiO2 is utilized in PCPs as UV shielding agents or to stop yellowing of the product (Wu and Hicks 2019).

Triclosan is the most common biocide ingredient in consumer liquid hand soaps. It is an antibacterial and antifungal agent that has been used as a biocide in personal hygiene products since the 1960s. It was originally used in the medical field in 1972 as a 1% component of surgical scrub and as toothpaste for dental care in Europe in 1985. Under the Federal Insecticide, Fungicide, and Rodenticide Act, triclosan has also been approved by the USEPA for use as an antimicrobial pesticide in bacteriostat and fungicide/fungistat applications (Jones et al. 2000).

A class of p-hydroxybenzoic acid ester derivatives (methyl, ethyl, propyl, isopropyl butyl, isobutyl, or benzyl) are known as parabens. Since parabens and their chlorinated derivatives are often detected in the aquatic compartment at low ng $\rm L^{-1}$ levels, they could be regarded as emerging pollutants. Because of their antibacterial properties as well as their durability at various pH and temperature ranges, parabens are frequently found in cosmetic products (Haman et al. 2015).

Due to their ability to scatter UV radiation with wavelengths ranging from 290 to 400 nm, sunscreens are a popular choice for protection against UV radiation risks, early skin aging, and skin cancer. Among the organic sunscreens that absorb new UV photons are benzophenone-3 (BP-3), 2-ethylhexyl 4-methoxycinnamate (OMC), 2-ethylhexyl 4-dimethylaminobenzoate (OD-PABA), homosalate (HMS), 3-(4-methylbenzylidene)camphor (4-MBC), and 3-benzylidene camphor (3-BC). Moreover, swimming, laundry, and bathing can introduce highly generated lipophilic sunscreens into the aquatic environment. Numerous investigations conducted on laboratory animals, both in vitro and in vivo, have demonstrated the endocrine

disruptive effects of sunscreen, encompassing disturbances to the hypothalamic-pituitary-thyroid axis (HPT) as well as reproductive and developmental functions. Through the food chain, human and animal exposure patterns may overlap (Lei et al. 2015). The study conducted by Johnson et al. revealed that formaldehyde releasers, cyclosiloxanes, and parabens were the most commonly used compounds. Additional chemicals of concern (CoCs) detected by gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS) included pollutants, perfumes, solvents, and preservatives. Their findings supplement research on health disparities caused by chemical exposures from several sources, increase awareness of potentially harmful compounds in PCPs, and aid in estimating disparities in chemical exposure.

Because UV filters are found worldwide in sediments, seas, and biota, they have recently gained attention as pollutants. These substances are widely utilized in commercial items to stop photodegradation and in personal care products to stop UV spectrum infiltration. These pollutants are being found in the aquatic environment more frequently as consumption rises, most likely as a result of being rinsed off after application and then seeping into the ecosystem (Coleman et al. 2023). In the cosmetics fields, octyl-methoxycinnamate (OMC) is widely used as a UV-B filter. Although OMC was first created to lessen the harmful photobiological impacts of UV radiation, its safety has come under scrutiny after certain research revealed harmful effects on the environment (Lorigo et al. 2024).

1.5 Water Disinfection By-Products

A type of secondary pollutant called disinfection by-products (DBPs) is often found in the urban water cycle and has been shown to have (eco) toxicological effects on aquatic systems as well as human health. As a result, DBPs are already commonplace environmental pollutants that should raise alarm. The chemical disinfectants that are most frequently used in public water sources are chlorine, ozone, chloramine (chlorine + ammonia), and chlorine dioxide. According to recent research, relatively modest iodine intakes raise thyroid stimulating hormone levels (Robison et al. 1998).

Analytical chemists found in 1974 that consumed waters contained amounts of up to $\sim 160 \,\mu\text{g/L}$ of trihalomethanes (THM4; chloroform, bromodichloromethane, dibromochloromethane, and bromoform), which form as byproducts of chlorine interactions with natural organic matter (NOM) (Rook 1974).

The list of harmful health effects linked to chemical disinfectants keeps getting longer. As of right now, the only significant risk that seems to be connected to drinking water chlorination is a higher risk of bladder cancer in men. It is crucial to identify the substances generating this effect in order to define alternatives that lower or eliminate the risk, not just to satiate scientific curiosity (Bellar et al. 1974). By the 1940s, widespread outbreaks of cholera, typhoid, and other waterborne illnesses had been mostly contained in the industrialized world because to chlorine

cleaning of municipal drinking supplies, which had begun shortly after 1900. Ever since, epidemiological research has indicated links between drinking chlorinated tap water with high THM4 levels and unfavorable health consequences, such as bladder cancer (Costet et al. 2011).

Several halogenated organic compounds, such as haloacetic acids (HAAs), haloacetonitriles (HANs), and trihalomethanes (THMs), are included in DBPs. Of the previously listed DBPs, THMs are the most prevalent, followed by HAAs, which can be detected in finished water at quantities of around µg/L, and HANs, which can be found in finished water at values as low as ng/L and as high as µg/L. Chloroform, bromodichloromethane (BDCM), chlorodibromomethane (CDBM), and bromoform are examples of volatile compounds that belong to the THMs group. On the other hand, HANs, such as dichloroacetonitrile (DBAN) and monochloroacetic acid (MCAA), and HAAs, such as dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA), and dibromoacetic acid (MBAA), are composed of volatile compounds (Kwarciak-Kozlowska 2020). Exposure to HOCs has been linked to a wide range of health consequences in both humans and wildlife, including neurological, immunological, endocrine, behavioral, and carcinogenic impacts. Furthermore, current research suggests that type 2 diabetes and obesity are influenced by exposure to HOCs (Kodavanti et al. 2023).

1.6 Veterinary Medications

Veterinarian medicines are one of the newly discovered toxins that have attracted a lot of interest because they have been found in water supplies and may be harmful to aquatic biota, which includes humans who use these water sources for purification. Anthelmintics make up an important portion of the animal pharmaceutical market. They are used to treat helminthic illnesses, or infections brought on by parasitic worms, and are administered to a variety of significant veterinary animals in aquaculture and agriculture (Horvat et al. 2012). Due to their widespread use as biocides, fungicides in agriculture, and antifungal agents in veterinary medicine, azole compounds have the potential to leave significant environmental residues due to their extensive use. It is believed that azoles may have an impact on aquatic species' endocrine systems (Peng et al. 2012). The pollution of soil, surface water, and groundwater caused major concerns because antibiotics, even at low concentrations, encourage the emergence and growth of antibiotic-resistant microbes because of their constant exposure to these substances. The authors report a rise in the development of harmful bacterial strains that are resistant, which can have detrimental effects on human health. A study by Vidhamaly et al. underline the necessity for additional thorough research with a solid methodology in order to better inform policy and put policies in place that ensure the quality of veterinary pharmaceuticals in supply chains. They suggested that transdisciplinary study is needed to understand the mechanism and effects of (substandard and fraudulent) SF veterinary products on human and animal health, agricultural output, their economies, and

antimicrobial resistance (AMR) (Vidhamaly et al. 2022). Recent reports have linked the bicyclic nonsteroidal anti-inflammatory drug ketoprofen—which is frequently used in both human and veterinary medicine—to environmental contaminants that pose a threat to ecological health. Because of its sporadic mixture, enantiomers, and transformation products—which have ecotoxicological impacts on a variety of taxa, including plants, microbes, and vertebrates—it is becoming a more serious danger. Moreover, ketoprofen endangers the ecosystem's ability to operate by being bioaccumulated and biomagnified throughout the food chain (Tyumina et al. 2023).

1.7 Manufactured Nanomaterials

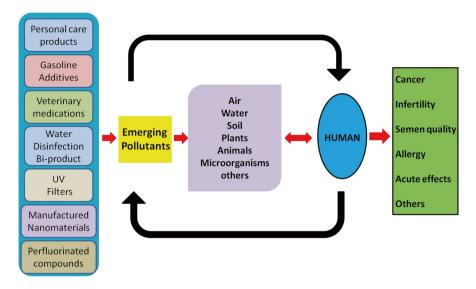
Nanomaterials (NMs) are ultrafine particles with a size range of 1–100 nm; however, size alone does not provide a valid criterion for NM classification. Materials may be incidental, man-made, or natural. Neural networks (NMs) display a variety of structural dimensions, such as zero-, one-, two-, and three-dimensional configurations (Cheriyamundath and Vavilala 2021). Because of their unique features and their applicability in a wide range of consumer and commercial applications, nanomaterials have sparked questions regarding possible environmental effects. Nanomaterials' small size may increase their bioavailability, or the ease with which living things can absorb them. Potentially negative consequences for ecological systems and creatures at various trophic levels may result from this. Because of their greater mobility, they may have a role in the environmental dispersion of nanomaterials. Additionally, they have the capacity to interact with other environmental contaminants in ways that have unclear antagonistic or synergistic effects (El-Kalliny et al. 2023).

According to the reports, NPs have the ability to damage DNA and trigger cell death since they can be found inside the cell in a variety of places, including the cytoplasm, nucleus, lipid vesicles, and cell membrane. An essential stage prior to cellular absorption is the interaction of NPs with cell membranes. It is believed that adhesive contact caused by steric interactions, electrostatic charges, Van der Waals forces, or interfacial tension effects is the mechanism of NP uptake by cells. These could consist of inflammation, oxidative stress, toxicity, and DNA damage. The transfer of NPs across tissue barriers into the bloodstream, where they can circulate and ultimately lodge in other organs, causes secondary NP exposure. These might include organ damage in the liver, spleen, or kidneys, as well as toxicity at the location of NP deposition (El-Kalliny et al. 2023).

Car exhaust is the primary source of atmospheric NPs. While gasoline engines release NPs between 20 and 60 nm, diesel engines release NPs between 20 and 130 nm. It has been discovered that CNTs and fibers are released as byproducts during the burning of gas and diesel. Since diesel-generated particles account for over 90% of all carbon nanoparticles (NPs) in the atmosphere, automobile pollution is a primary source of nanoparticulate contamination in metropolitan environments (Jeevanandam et al. 2018). In their study, Stefani et al. (2005) noted that lead, glass,

respirable asbestos fibers, and other hazardous particles from everyday items could be present in the released particulates near the site of building destruction. The benthic organisms in freshwater were adversely impacted by the NPs aggregates that settled to the bottom and gradually accumulated in the silt. While NPs may build up in the marine ecology between warm and cold currents (Hyseni 2016), it has been reported that TiO2 NP exposure has been linked to negative effects on aquatic organisms, including "trout," according to certain study findings (Federici et al. 2007). Another nanoparticle Amorphous silicon dioxide particles (A-SiO2) inhalation exposure in animal has been reported partially linked to reversible inflammation in the respiratory system and alterations in blood parameters; however, these studies do not show evidence of lung fibrosis progression (Shin et al. 2017). Carbon nanotubes (CNTs), which can absorb nanomaterials by skin contact or oral ingestion through the gastrointestinal tract, have been the subject of several studies reporting possible effects on both aquatic and terrestrial creatures. According to tests on mammals, CNTs are both cytotoxic and genotoxic to various cell types, including macrophages. Exposure to CNTs can cause chromosomal aberrations, necrosis, apoptosis, and the release of reactive oxygen species (ROS), as well as the expression of inflammatory cytokines like IL-8 (Girardello et al. 2015) (Table 1.1).

1.8 Impacts of Emerging Pollutants on Human and Environment


Human health is seriously and increasingly at risk from pollution. It is now thought to be the primary environmental cause of health issues worldwide, causing over nine million preventable deaths every year. It causes the economy to suffer enormous losses, undermines efforts for economic improvement, and causes the Sustainable Development Goals (SDGs) to take longer to achieve. Pollution poses a threat to both the long-term survival of human populations and the integrity of the earth's support systems, much as climate change and the depletion of freshwater resources worldwide. The persistent challenge is the emerging pollutant. It is known that some EPs may affect aquatic ecosystems and creatures biochemically. Daphnia fish have been found to be susceptible to four distinct classes of EPs (antibiotics, antineoplastics, cardiac medications, and sex hormones) when these medicinal compounds are tested for aquatic toxicity; on the other hand, estrogens and antibiotics have been identified as the most toxic products for both public health and marine life (Rodriguez-Narvaez et al. 2017).

Chemicals are created and used by industries in over 100,000 distinct ways, making them an essential element of daily life. The employment and economic growth of nations are significantly impacted by the global chemical market. On the other hand, a lot of chemicals are released into the environment, and chemical contamination is becoming commonplace in both land and water. These environmental contaminants affect human health and the environment in a wide range of acute and

 Table 1.1 Emerging pollutants, its sources, and their effects on human health and environment

References	Rodriguez-Jorquera et al. (2019), Lau et al. (2007)	Fan et al. (2014), Seyyedsalehi and Boffetta (2023)	Potera (2009)	Joensen et al. (2009)	Mennear (1997)	NTP (1989a, b)	ATSDR (2017)	Apetroaei et al. (2020)	Tyumina et al. (2023)	Peng et al. (2012)	Costet et al. (2011)	npounds Kodavanti et al. (2023)
Chemicals and sources	Perfluoroalkyl acids	PFAS	PFOA & PFOS	PFOS	MTBE	Bromoethane	Toluene	ETBE	Ketoprofen	Azole	Water chlorination	Halogenated organic compounds
Effect on human health and environment	Altered thyroid hormone, hepatotoxicity, changes in glucose and cholesterol, toxicity to the reproductive and developmental systems, and carcinogenic effects	Breast cancer, kidney cancer, and testicular cancer	Increased pregnancy losses and disruption in sex hormone homeostasis and sexual maturation	Reduces women's ability to lactate	Damages kidney, liver, immune system, and central nervous system in addition to causing cancer of the testicles, uterus, and kidneys	Uterine tumor incidence.	Following inhalation, symptoms include headaches, nausea, exhaustion, headaches, dizziness, and upper respiratory tract irritation	Suspected carcinogen	Frequently used in both human and veterinary medicine has reported to have ecotoxicological impacts on a variety of taxa, including plants, microbes, and vertebrates	Impact on aquatic species' endocrine systems	Widespread outbreaks of cholera, typhoid, and other waterborne illnesses had been mostly contained in the industrialized world because of chlorine cleaning of municipal drinking supplies.	Linked to a wide range of health consequences in both humans and wildlife, including neurological, immunological, endocrine,
Emerging pollutants	Perfluorinated compounds				Gasoline additives				Veterinary medications		Water disinfection by-products	
S. no.	П				2				κ		4	

DiNardo et al. (2018)	Lorigo et al. (2024)	Lei et al. (2015)	Federici et al. (2007)	Shin et al. (2017)	Girardello et al. (2015)
Oxybenzone	Octyl-methoxycinnamate (OMC) is widely used as a UV-B filter	Among the organic sunscreens that absorb new UV photons are benzophenone-3 (BP-3), 2-ethylhexyl 4-methoxycinnamate (OMC), 2-ethylhexyl 4-dimethylaminobenzoate (OD-PABA), homosalate (HMS), 3-(4-methylbenzylidene)camphor (4-MBC), and 3-benzylidene camphor (3-BC)	TiO2	A-SiO2	Carbon nanotubes (CNTs)
Oxybenzone is present worldwide in human urine, serum, and breast milk in addition to being present in water, soil, sediments, sludge, and biota. This substance is a known contact and photocontact allergen that can cause contact urticaria and, to a lesser extent, contact-mediated anaphylaxis in people. It has also been connected to Hirschsprung's illness	Harmful effects on the environment	Early skin aging, and skin cancer.	Negative effects on aquatic organisms	Partially linked to reversible inflammation in the respiratory system and alterations in blood parameters	CNTs are both cytotoxic and genotoxic to various cell types, including macrophages. Exposure to CNTs can cause chromosomal aberrations, necrosis, apoptosis, and the release of reactive oxygen species (ROS), as well as the expression of inflammatory cytokines like IL-8
Personal care products and UV filters			6. Manufactured	nanomaterials	

Fig. 1.2 Schematic diagram displaying the impact of some emerging pollutants on human and environment. It is also showcasing the interaction among air, water, soil, animals, microorganisms, and EPs that have harmful effects on humans upon exposure

long-term ways (e.g., immunotoxicity, neurological diseases, malignancies, endocrine disruption, etc.) (Sanchez and Egea 2018).

Chemicals and substances that have lately been determined to pose a threat to ecosystems, the environment, and human health are known as emerging pollutants, or EPs (Fig. 1.2). Furthermore, a large number of these newly discovered toxins are not covered by international or national regulations, which increases the risk to our way of life. Numerous substances, such as pharmaceuticals, steroids, endocrine disruptors, hormones, industrial additives, chemicals, microbeads, and microplastics are among the contaminants (Krishnakumar et al. 2022). Some of the emerging pollutants are discussed in this chapter that has gained attention lately.

Numerous investigations conducted on laboratory animals, both in vitro and in vivo, have demonstrated the endocrine disruptive effects of sunscreen, encompassing disturbances to the hypothalamic-pituitary-thyroid axis (HPT) as well as reproductive and developmental functions (Krause et al. 2012). Long-term exposure to particulate matter has been linked to a number of new concerns, including diabetes, prenatal mortality, neurodevelopment, and cognitive functions. Ultrafine particulate matter, secondary inorganic aerosols, organic and black carbons, and other newly discovered air pollutants have detrimental impacts on human health. Black carbon has been shown to raise mortality from all causes, as well as from cardiovascular and cardiopulmonary diseases (Yadav et al. 2021).

1.9 Conclusion and Future Recommendations

Through a variety of known and unknown routes, humans and the ecosystem are exposed to a wide range of new pollutants. Our chapter explores that these pollutants consistently create new and pressing problems for the air, water, soil, and ecosystems—especially for human health. Furthermore, novel chemical outputs proliferate and typically surpass the capabilities of risk assessment techniques, safety remediation strategies, monitoring methodologies, and existing preventative measures. The developing pollutants are suspected to be carcinogenic, teratogenic, and mutagenic to humans and other animals, according to ongoing research and studies. On the one hand, there isn't enough substantial data to establish a link between newly discovered pollutants and harmful impacts on human health and environment. However, we cannot discount the negative consequences suggested by animal tests, even though the exposure levels in animal trials could not accurately reflect human exposure levels and long-term chronic exposure is rarely used in animal models. We still don't fully understand the long-term impacts of EPs, though. The limited and sparse nature of EPs' fate and detrimental effects on aquatic life and human health demands for more research and understanding.

Therefore, in order to facilitate integrated research to reduce pollution inputs while maximizing available resources, future research endeavors should focus on the pollutants that have the most effects on both human health and environment.

References

Alsen M, Leung AM, van Gerwen M (2003) Per- and polyfluoroalkyl substances (PFAS) in community water systems (CWS) and the risk of thyroid cancer: an ecological study. Toxics 11(9):786. https://doi.org/10.3390/toxics11090786. PMID: 37755796; PMCID: PMC10537801

Aoyama H, Couse JF, Hewitt SC, Haseman JK, He H, Zheng X et al (2005) Upregulation of estrogen receptor expression in the uterus of ovariectomized B6C3F1 mice and Ishikawa cells treated with bromoethane. Toxicol Appl Pharmacol 209(3):226–235

Apetroaei MR, Avram ER, Atodiresei DV, Apetroaei GM (2020) Emerging pollutants-a potential threat to the marine environment. Sci Bull Nav Acad 23(1):171–178

Arvaniti OS, Stasinakis AS (2015) Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci Total Environ 524–525:81–92

ATSDR (2017) Toxicological profile for toluene. Public Health Service, U.S. Department of Health and Human Services, Atlanta

Bellar TA, Lichtenberg JJ, Kroner RC (1974) The occurrence of organohalides in chlorinated drinking waters. J Am Water Works Assoc 66(12):703–706

Bravo AH, Sanchez AP, Sosa ER, Keener TC, Lu M (2006) The potential impact of gasoline additives on air quality in developing countries. Clean Techn Environ Policy 8:174–181

Bunke D et al (2019) Developments in society and implications for emerging pollutants in the aquatic environment. Environ Sci Eur 31(1):1–17

Cheriyamundath S, Vavilala SL (2021) Nanotechnology-based wastewater treatment. Water Environ J 35:123–132

- Coleman C, Glinski D, Hankins C, Raimondo S, Henderson W (2023) Understanding the behavior of common ultraviolet filtering compounds under simulated environmental conditions. In: 2023 SETAC North America Annual Meeting, Louisville, KY, November 12–16, 2023
- Costet N, Villanueva CM, Jaakkola JJK, Kogevinas M, Cantor KP, King WD, Lynch CF, Nieuwenhuijsen MJ, Cordier S (2011) Water disinfection by-products and bladder cancer: is there a European specificity? A pooled and meta-analysis of European case-control studies. Occup Environ Med 68(5):379–385
- D'Hollander W, de Voogt P, De Coen W, Bervoets L (2010) Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol 208:179–215
- DiNardo JC, Downs CA (2018) Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. J Cosmet Dermatol 17(1):15–19
- El-Kalliny AS, Abdel-Wahed MS, El-Zahhar AA, Hamza IA, Gad-Allah TA (2023) Nanomaterials: a review of emerging contaminants with potential health or environmental impact. Discov Nano 18(1):68
- Falta RW, Bulsara N, Henderson JK, Mayer RA (2005) Leaded-gasoline additives still contaminate groundwater. Environ Sci Technol 39(18):379A–384A
- Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD et al (2014) Breast cancer in China. Lancet Oncol 15:e279–e289
- Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430
- Fei C, McLaughlin JK, Lipworth L, Olsen J (2009) Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod 24(5):1200–1205. https://doi.org/10.1093/humrep/den490
- Fishbein L (1979) Potential halogenated industrial carcinogenic and mutagenic chemicals. II. Halogenated saturated hydrocarbons. Sci Total Environ 11:163–195
- Gavrilescu M, Demnerova K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32:147–156
- Girardello R, Tasselli S, Baranzini N, Valvassori R, de Eguileor M, Grimaldi A (2015) Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. *PLoS One* 10(12):e0144361
- Haman C, Dauchy X, Rosin C, Munoz JF (2015) Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Res 68:1–11
- Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210:623–634
- Horvat AJ, Petrović M, Balbić S, Pavlović DM, Ašperger D, Pelko S, Mance AD, Kaštelan-Macan M (2012) Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal Chem 31:61–84
- Hyseni S (2016) Toxicological effects of nanomaterials on aqueous and terrestrial ecosystems. Cent Dev Strateg 2016(1):1–2
- Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanomaterials in medicine and their applications. Beilstein J Nanotechnol 9:1050–1074
- Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebæk NE, Jørgensen N (2009) Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect 117(6):923–927. https://doi.org/10.1289/ehp.0800517
- Jones RD, Jampani HB, Newman JL, Lee AS (2000) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28(2):184–196
- Joseph PM, Weiner MG (2002) Visits to physicians after the oxygenation of gasoline in Philadelphia. Arch Environ Health 57(2):137–154
- Klassen CD (ed) (1996) Casarett and Doull's toxicology: the basic science of poisons, 5th edn. McGraw-Hill, New York
- Kodavanti PRS, Costa LG, Aschner M (2023) Perspective on halogenated organic compounds. Adv Neurotoxicol 10:1–25

- Krause M, Klit A, Jensen MB et al (2012) Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int J Androl 35(3):424–436
- Krishnakumar S, Singh DSH, Godson PS et al (2022) Emerging pollutants: impact on environment, management, and challenges. Environ Sci Pollut Res 29:72309–72311
- Kwarciak-Kozlowska A (2020) Methods used for the removal of disinfection by-products from water. In: Prasad MNV (ed) Disinfection by-products in drinking water: detection and treatment, 1st edn. Butterworth-Heinemann, Oxford, pp 1–22
- Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394
- Lee YJ, Kim MK, Bae J, Yang JH (2013) Concentrations of perfluoroalkyl compounds in maternal and umbilical cord sera and birth outcomes in Korea. Chemosphere 90:1603–1609
- Lei M, Zhang L, Lei J, Zong L, Li J, Wu Z, Wang Z (2015) Overview of emerging contaminants and associated human health effects. Biomed Res Int 2015:1–12
- Li X, Song F, Liu X, Shan A, Huang Y, Yang Z, Li H, Yang Q, Yu Y, Zheng H, Cao XC, Chen D, Chen KX, Chen X, Tang NJ (2022) Perfluoroalkyl substances (PFASs) as risk factors for breast cancer: a case-control study in Chinese population. Environ Health 21(1):83
- Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E (2024) Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. J Toxicol Environ Health B Crit Rev 27(2):55–72
- McGregor D (2006) Methyl tertiary-butyl ether: studies for potential human health hazards. Crit Rev Toxicol 36(4):319–358
- Mennear JH (1997) Carcinogenicity studies on MTBE: critical review and interpretation. Risk Anal 17(6):673–681
- Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci Total Environ 595:601–614
- Morikawa A, Kamei N, Harada K, Inoue K, Yoshinaga T, Saito N et al (2006) The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles (Trachemys scripta elegans and Chinemys reevesii): an Ai river ecological study in Japan. Ecotoxicol Environ Saf 65:14–21
- National Toxicology Program (1989a) Toxicology and carcinogenesis studies of chloroethane (ethyl chloride) in F344/N rats and B6C3F1 mice (inhalation studies) (NTP TR No. 346, NIH Publication No. 75-00-3). National Institute of Environmental Health Sciences, Research Triangle Park, NC
- National Toxicology Program (1989b) Toxicology and carcinogenesis studies of bromoethane (ethyl bromide) in F344/N rats and B6C3F1 mice (inhalation studies) (NTP TR No. 363, NIH Publication No. 74-96-4). National Institute of Environmental Health Sciences, Research Triangle Park, NC
- Olsen GW, Chang SC, Noker PE, Gorman GS, Ehresman DJ, Lieder PH et al (2009) A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans. Toxicology 256:65–74
- Peng X, Huang Q, Zhang K, Yu Y, Wang Z, Wang C (2012) Distribution, behavior, and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China. Sci Total Environ 426:311–317
- Pirali B, Negri S, Chytiris S et al (2009) Perfluorooctane sulfonate and perfluorooctanoic acid in surgical thyroid specimens of patients with thyroid diseases. Thyroid 19(12):1407–1412
- Potera C (2009) Reproductive toxicology: study associates PFOS and PFOA with impaired fertility. Environ Health Perspect 117(4):A148. PMCID: PMC2679623
- Robison LM, Sylvester PW, Lang JP, Bull RJ (1998) Comparison of the effects of iodine and iodide on thyroid function in humans. J Toxicol Environ Health 55(2):93–106
- Rodriguez-Jorquera IA, Colli-Dula RC, Kroll K, Jayasinghe BS, Parachu Marco MV, Silva-Sanchez C et al (2019) Blood transcriptomics analysis of fish exposed to perfluoro alkyls

- substances: assessment of a non-lethal sampling technique for advancing aquatic toxicology research. Environ Sci Technol 53:1441–1452
- Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER (2017) Treatment technologies for emerging contaminants in water. A review. Chem Eng J 323:361–380

18

- Rook JJ (1974) Formation of haloforms during chlorination of natural water. J Water Treat Exam 23(2):234–243
- Sanchez W, Egea E (2018) Health and environmental risks associated with emerging pollutants and novel green processes. Environ Sci Pollut Res 25:6085–6086
- Seyyedsalehi MS, Boffetta P (2023) Per- and poly-fluoroalkyl substances (PFAS) exposure and risk of kidney, liver, and testicular cancers: a systematic review and meta-analysis. Med Lav 114(5):e2023040
- Shin JH, Jeon K, Kim JK et al (2017) Subacute inhalation toxicity study of synthetic amorphous silica nanoparticles in Sprague-Dawley rats. Inhal Toxicol 29(10):567–576
- Stefani D, Wardman D, Lambert T (2005) The implosion of the Calgary General Hospital: ambient air quality issues. J Air Waste Manage Assoc 55(1):52–59
- Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I (2023) Ketoprofen as an emerging contaminant: Occurrence, ecotoxicity, and (bio)removal. Front Microbiol 14:1200108
- U.S. EPA (2003) Occurrence estimation methodology and occurrence findings report for the six-year review of existing National Primary Drinking Water Regulations; EPA-815-R-03-006.
 U.S. EPA, Office of Water, Washington, DC. www.epa.gov/safewater/standard/review/pdfs/support_6yr_occurancemethods_final.pdf
- Vasilachi IC, Asiminicesei DM, Fertu DI, Gavrilescu M (2021) Occurrence and fate of emerging pollutants in water environment and options for their removal. Water 13(2):181
- Vidhamaly V, Bellingham K, Newton PN et al (2022) The quality of veterinary medicines and their implications for One Health. BMJ Glob Health 7:e008564
- WHO (2016) WHO expert consultation: available evidence for the future update of the WHO global air quality guidelines (AQGs). Meeting report, Bonn, Germany, 29 September 1 October
- Wu F, Hicks AL (2019) Estimating human exposure to titanium dioxide from personal care products through a social survey approach. Integr Environ Assess Manag 16:10–16
- Wu XM, Bennett DH, Calafat AM et al (2015) Serum concentrations of perfluorinated compounds (PFC) among selected populations of children and adults in California. Environ Res 136:264–273
- Yadav D, Rangabhashiyam S, Verma P, Singh P, Devi P, Kumar P et al (2021) Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere 272:129492