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Abstract In this article, an integrated single-vendor single-buyer production-

inventory model with stochastic demand and imperfect production process is inves-

tigated. The lead-time is assumed to be dependent on the lot-size and a fixed delay

due to non-productive times. A methodology is developed to derive the optimal ven-

dor investment required to reduce the defect rate and thereby minimize the total cost

of the integrated system. Under the n-shipment policy, an algorithm is proposed so

as to minimize the expected integrated total cost and determine the optimal values

of the number of shipments, lot-size, safety stock factor, and percentage of defec-

tives. Numerical results are used to illustrate the effect of various parameters on the

system.

Keywords Economic order quantity ⋅ Integrated model ⋅ Imperfect production

Process quality ⋅ Variable lead-time

1 Introduction

The integrated single-vendor single-buyer production-inventory problem is inspired

by the expanding focus on supply chain management which has been proved to be

an adequate means by which both the buyer’s and the vendor’s interest can be bene-

fited simultaneously [8]. A significant amount of literature [1, 9, 11–13, 17, 19] is

available in this regard. In the existing literature, it is mostly found that the demand

is deterministic and that shortages are not allowed. This was first extended by Ben-

Daya and Hariga [3] where the authors assumed the annual customer demand to be

stochastic, thus allowing shortages. Since then various researchers [4, 6, 7, 14] and

the references therein have extended the stochastic models under various assump-

tions. However, in most of these works, the production process quality is presumed

to be perfect. Even in models with imperfect production, the production process qual-

ity is not taken to be a control parameter [2, 10, 15–17, 21–23]. Ouyang et al. [18]
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did consider process quality improvement but neglected the duration of screening.

Dey and Giri [5] extended this existing literature by assuming optimal vendor in-

vestment in a stochastic single-vendor single-buyer imperfect production-inventory

model with non-negligible screening time. But, they assumed the lead-time to be

constant. However, in reality, lead-time is usually not a constant and assuming it to

be so is an unreal restriction imposed on the model. Recently, Glock [6] developed a

model with variable lead-time extending the Ben-Daya and Hariga’s model [3] and

permitting batch shipments increasing by a fixed factor. Glock [7] further extended

this model by studying the alternative methods for reducing the lead-time and its

effect on the expected total costs. Ben-Daya and Hariga [3] assumed the lead-time is

taken to be proportional to the lot-size produced by the vendor in addition to a fixed

delay due to transportation, non-productive time, etc. This makes sense intuitively

since, from a practical point of view, lead-time should be considered as a function

of the production lot-size [3]. Keeping this argument in mind, a linear relationship

between lead-time and lot-size, including non-productive time, is taken into consid-

eration. Thus, in order to make the model more attuned to reality, the present paper

extends Dey and Giri’s model [5] by assuming the lead-time to be linearly dependent

on the production lot-size and non-productive times.

2 The Model

2.1 Notations

D expected demand rate in units per time for non-defective items

P production rate, p = 1
P

A buyer’s ordering cost per order

F transportation cost per delivery

B vendor’s setup cost

L lead-time

hv vendor’s holding cost per item per year

hb1 buyer’s holding cost for defective items per item per year

hb2 vendor’s holding cost for non-defective items per item per year

s buyer’s unit screening cost

x buyer’s screening rate

w vendor’s unit warranty cost for defective items

y percentage of defective items produced

k safety stock factor

𝜋 buyer’s shortage cost per item per year

𝜂 fractional opportunity cost

𝛿 percentage decrease in defective items per dollar increase in investment
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2.2 Assumptions

∙ Items of a single product are ordered from a single vendor by a single buyer.

∙ Demand per unit time is normally distributed with mean D and standard deviation

𝜎.

∙ An order of nQ (non-defective) items is placed by the buyer to the vendor. These

items are produced and, on average, transferred to the buyer in n equal sized ship-

ments by the vendor, n being a positive integer.

∙ The buyer follows the classical (Q, r) continuous review inventory policy.

∙ It is assumed that the lead-time depends on the lot-size as per the form L = pQ + b,

where b is the fixed delay due to transportation, non-productive times, etc. The

lead-time demand is defined as the demand during the lead-time period. The lead-

time demand is normally distributed with mean D(pQ + b) and standard deviation

𝜎

√
pQ + b.

∙ The re-order point r = expected demand during lead-time + safety stock (SS), i.e.,

r = D(pQ + b) + k𝜎
√
pQ + b, where k is the safety stock factor.

∙ Shortages are allowed and completely backlogged.

∙ y0 (0 ≤ y0 ≤ 1) is the percentage of defective items produced in each batch of size

Q.

∙ The vendor’s rate of production of non-defective items is greater than the demand

rate, i.e., P(1 − y0) > D.

∙ The screening rate x is fixed and is greater than the demand rate i.e., x > D.

∙ The vendor incurs a warranty cost for each defective item produced.

∙ The vendor invests money to improve the production process quality in terms of

buying new equipment, improving machine maintenance and repair, worker train-

ing, etc. We consider the following logarithmic investment function I(y) [20]:

I(y) = 1
𝛿

ln
(
y0
y

)

where 𝛿 is the percentage decrease in y per dollar (or any other suitable currency)

increase in investment and y0 is the original percentage of defective items pro-

duced prior to investment.

It is assumed that the vendor accepts an order of size nQ for non-defective items

from the buyer. The vendor then produces these nQ items all at once, and then, n
batches of Q items are delivered each at a regular interval of Q(1 − y)∕D units of

time on average. Hence, we can say that each ordering cycle is of length Q(1 − y)∕D,

and the complete production cycle is of length nQ(1 − y)∕D.
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2.3 Buyer’s Perspective

The buyer is assumed to follow the classical (Q, r) continuous review inventory sys-

tem. That is, the buyer places an order of Q items to the vendor once the inventory

level falls to the re-order point r. The vendor delivers these items after a lead-time

L = pQ + b. Here, the safety stock factor k is taken to be a decision variable instead

of the re-order point r. On receiving the order from the vendor, the buyer inspects

the items at a fixed non-negligible screening rate x. The defective items are discov-

ered in each lot, kept in hold separately and returned to the vendor when the next

lot of items arrive. Therefore, the buyer incurs two types of holding cost—one for

defective items and one for non-defective items [5]. The average inventory level for

non-defective items for the buyer (including those defective items which have not yet

been detected before the end of the screening time Q∕x) is given by Eq. (1) (Fig. 1).

nQ(1 − y)
D

[
k𝜎

√
pQ + b +

Q(1 − y)
2

+
DQy

2x(1 − y)

]
(1)

Equivalently, the average inventory level for defective items is given as below:

nQ2y
[
1 − y
D

− 1
2x

]
(2)

Thus, the annual expected total cost for the buyer including the ordering cost,

shipment cost, holding cost, shortage cost, and screening cost is given as

Fig. 1 Inventory of the buyer
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ETCB(Q, k, n) = D(A + nF)
nQ(1 − y)

+ hb1

[
Qy −

DQy
2x(1 − y)

]

+hb2
[
k𝜎

√
pQ + b +

Q(1 − y)
2

+
DQy

2x(1 − y)

]

+
𝜋D𝜎

√
pQ + b𝜓(k)

Q(1 − y)
+ sD

1 − y
(3)

where 𝜓(k) = ∫
∞
k (z − k)𝜙(z)dz, 𝜙(z) being the standard normal density function.

2.4 Vendor’s Perspective

In the course of the production process, Q items are produced by the vendor in the

first instance and then, these items are delivered to the buyer. Thenceforth, a quantity

of Q items is delivered by the vendor to the buyer after an interval of every T units

of time, where T = Q(1 − y)∕D. This process of delivering the items to the buyer is

carried on till the vendor’s production run is completed (Fig. 2).

Now, the average inventory holding cost for the vendor [15] is calculated as given

below in Eq. (4):

EHCV = hv
Q
2

[
n(1 −

Dp
1 − y

) − 1 +
2Dp
1 − y

]
(4)

Fig. 2 Inventory of the vendor
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Thus, the total cost incurred by the vendor is the sum of the setup cost, holding

cost, warranty cost, and investment for reducing the percentage defective items [5]

and it is given as

ETCV(Q, y, n) = BD
nQ(1 − y)

+ hv
Q
2

[
n(1 −

Dp
1 − y

) − 1 +
2Dp
1 − y

]

+
wDy
1 − y

+ 𝜂

𝛿

ln
(
y0
y

)
(5)

where 𝜂 is the fractional opportunity cost. It should be taken into account here that

the logarithmic investment function considered above is convex in y.

2.5 Integrated System

The total expected annual cost of the integrated system can therefore be expressed

as the sum of the buyer’s and the vendor’s total expected annual costs which is given

as below:

ETC(Q, y, k, n) = D(A + B + nF)
nQ(1 − y)

+ hb1

[
Qy −

DQy
2x(1 − y)

]
+ hv

Q
2

[
n(1 −

Dp
1 − y

) − 1 +
2Dp
1 − y

]

+hb2
[
k𝜎

√
pQ + b +

Q(1 − y)
2

+
DQy

2x(1 − y)

]

+
𝜋D𝜎

√
pQ + b𝜓(k)

Q(1 − y)
+

(s + wy)D
1 − y

+ 𝜂

𝛿

ln
(
y0
y

)
(6)

Here, the control parameters are the lot-sizeQ, the percentage of defectives produced

y, the safety stock factor k, and the number of shipments n.

Showing analytically that the expected total cost function, ETC, is convex in all

the decision variables Q, y, k and n is not always possible. Nevertheless, the same

can be demonstrated numerically. For given fixed values of n (where n is a positive

integer) and y (0 ≤ y ≤ y0 ≤ 1), the convexity of total cost function ETC w.r.t Q and

k can be easily shown by means of a 3D-graph (Fig. 4). Keeping this potential non-

convexity in mind, an iterative algorithm is proposed, in the subsequent section, to

derive the optimal values of Q, y, k, and n for which the expected annual total cost

for the integrated system ETC is minimized.

3 Solution Procedure

Taking the second-order partial derivative of the total cost function ETC with respect

to n, we find,
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𝜕
2ETC
𝜕n2

= 2D(A + B)
n3Q(1 − y)

> 0 ∀ n ≥ 1 (7)

Thus, from the above equation, we can conclude that ETC is convex in n.

Again, taking the second-order partial derivative of ETC with respect to k and Q,

we get,

𝜕
2ETC
𝜕k2

=
D
√
pQ + b𝜎𝜋𝜙(k)
Q(1 − y)

> 0 (8)

𝜕
2ETC
𝜕Q2 = 2DG(n)

Q3(1 − y)
−

hb2k𝜎p2

4(pQ + b)
3
2

+𝜋D𝜎𝜓(k)
(1 − y)

[2
√
pQ + b
Q3 −

p
Q2

√
pQ + b

−
p2

4Q(pQ + b)
3
2

]
> 0 (9)

where G(n) = A+B+nF
n

.

Hence, from Eqs. (8) and (9), ETC is seen to be convex in k and Q for fixed val-

ues of n and y (0 ≤ y ≤ y0 ≤ 1). Although y is bounded, it is not possible to prove

conclusively that ETC is convex in y. So in order to arrive at an optimal solution, the

following procedure is followed:

For fixed value of n, the first derivative of ETC w.r.t k is set to zero. That is,

𝜕ETC
𝜕k

= hb2 +
𝜋D

Q(1 − y)
(F(k) − 1) = 0 (10)

where F(⋅) is the cumulative distribution function.

Thus, we have,

F(k) =
hb2Q(1 − y)

𝜋D
(11)

where F(⋅) = 1 − F(⋅).
Next, taking the first derivatives of ETC with respect to Q and y and setting those

equal to zero, we get

𝜕ETC
𝜕Q

= − DG(n)
Q2(1 − y)

+ yhb1
{
1 − D

2x(1 − y)
} + hb2

{1 − y
2

+
Dy

2x(1 − y)
}

+
hb2k𝜎p

2
√
pQ + b

+
hv
2
{
− 1 + n

(
1 −

Dp
1 − y

) +
2Dp
1 − y

}

−𝜋D𝜎𝜓(k)
(1 − y)

[
−

√
pQ + b
Q2 +

p
2Q

√
pQ + b

]
= 0 (12)

and
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𝜕ETC
𝜕y

= Dw
1 − y

+
D(s + wy)
(1 − y)2

− 𝜂

y𝛿
+ DG(n)

Q(1 − y)2
+ Qhb1

{
1 − D

2x(1 − y)
}

−
DQyhb1
2x(1 − y)2

+ hb2
{
− Q

2
+ DQ

2x(1 − y)
+

DQy
(1 − y)2

}

+
Qhv
2

{ 2Dp
(1 − y)2

−
Dnp

(1 − y)2
} −

𝜋D𝜎
√
pQ + b𝜓(k)

Q(1 − y)2
= 0, (13)

respectively.

The algorithm presented by Dey and Giri [5] is modified and used here to derive

the optimal solution. It is given as below:

The Algorithm

Step 1: Set ETC∗ = ∞, n = 1
Step 2: Set y = y0 and k = 0 and compute 𝜓(k) and then compute Q = Q0 using the

values of y0, k, 𝜓(k) in equation (12)

Step 3: Compute k from (11) using Q0, y and 𝜓(k) = ∫
∞
k (z − k)𝜙(z)dz

Step 4: Compute y from (13) using the values k,Q0 obtained in the previous step. If

y ≥ y0, then set y = y0.

Step 5: Compute Q from (12) using the updated values of k, y.

If |Q − Q0| ≤ 𝜖, then compute ETC(Q, k, y, n) and go to Step 6.

Else set Q0 = Q and go back to Step 3.

Step 6: If ETC∗ ≥ ETC, we set ETC∗ = ETC,Q∗ = Q, y∗ = y, k∗ = k, n = n + 1 and

go back to Step 2. Else put n∗ = n − 1 and stop.

The corresponding values of the control parameters for n∗ = n − 1 give the

optimal solution.

It is to be noted here that we only get a local optimum by adopting the solution

procedure mentioned. Since proving analytically that the objective function ETC
is convex in all control parameters is not possible, we cannot say that the solution

obtained above is a global optimum. In order to showcase the effects of the original

process quality, the investment option and other model parameters on the optimal

decisions, numerical studies are carried out in the following section.

4 Numerical Results and Discussions

For numerical studies, the following data set is considered:

D = 1000, P = 3200, A = 50, F = 35, K = 400, L = 10∕365, hv = 4, hb1 = 6, hb2 =
10, s = 0.25, x = 2152, w = 20, 𝜋 = 100, b = 0.01, 𝜎 = 5, y = 0.22, 𝜂 = 0.2, 𝛿 =
0.0002

For fixed values of Q, k, n, it is shown that the total expected cost function ETC
is convex in y (0 ≤ y ≤ y0) (Fig. 3). For fixed values of n, y, the convexity of ETC
w.r.t.Q, k is shown in Fig. 4.
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Fig. 3 ETC w.r.ty

Fig. 4 ETC w.r.t Q, k

Table 1 depicts that the increase in the warranty cost w paid by the vendor results

in an increase in the optimal total cost incurred by the supply chain. Also, with an

increase in warranty cost, we find a decrease in the optimal value of the percentage

of defective items. This is intuitively correct since if a higher warranty cost is to be

paid by the vendor as a penalty for producing defective items, it would reasonably be

beneficial for him if the number of defective items produced reduces considerably.

Following the same logic, an increase in the value of b should imply an increase in

the total cost incurred as also shown in Table 1.

A significant conclusion that can be reached from Table 2 is that the investment

which is made in order to improve the production process quality is not indepen-

dent of the original quality. That is, the necessity of an investment and the extent

of it being beneficial is decided by the original production process quality. This is

evident from Table 2 which clearly shows that investment to improve the production

process quality is not needed when the original percentage of defectives is very low.
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Table 1 Effect of parameters w and b
Q∗ n∗ y∗ ETC∗

w 20 86.42 7 0.043 5213.31

24 86.10 7 0.037 5378.61

30 95.05 6 0.030 5584.26

b 0.005 86.38 7 0.043 5211.48

0.010 86.42 7 0.043 5213.31

0.100 96.01 6 0.043 5235.53

Table 2 Effect of y0
y0 Q∗ n∗ y∗ ETC∗ I(y∗)
0.010 86.41 7 0.043 2122.27 0.00

0.040 86.41 7 0.043 3508.57 0.00

0.100 86.42 7 0.043 4424.86 843.63

0.220 86.42 7 0.043 5213.31 1632.09

0.418 86.42 7 0.043 5855.17 2273.93

0.680 86.42 7 0.043 6341.78 2760.05

Table 3 Effect of demand rate

d Q∗ n∗ y∗ ETC∗ I(y∗)
800 84.31 6 0.052 4752.10 1438.87

900 90.09 6 0.047 4993.20 1541.46

1000 86.42 7 0.043 5213.31 1632.09

1100 91.53 7 0.039 5413.49 1716.48

1200 96.60 7 0.037 5598.41 1794.05

However, with an increase in the value of y0, the amount of investment required to

optimize the supply chain also increases noticeably.

Table 3 shows that the production lot-size increases with an increase in demand

rate, which is very obvious since the buyer would need to place an order of a larger

quantity to satisfy the increase in demand. Also, an increase in the lot-size implies

that there is an increase in number of both the defective and non-defective items

produced, and consequently, the amount of investment needed to optimize the total

cost will also increase. So, an increase in demand causes an increase in the optimal

lot-size, the total expected cost incurred, and also the optimal vendor investment

amount. All these intuitively correct effects are illustrated numerically.

It is seen from Table 4 that for very small values of y0, the optimal value of ETC
obtained for the two cases—with investment and without investment—differs by a

small amount. However, as the percentage of defectives increases in the system, there
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Table 4 Effect of investment

y0 ETC* (with investment) ETC* (without investment)

0.100 4424.86 5069.14

0.220 5213.31 8873.63

0.418 5855.17 18296.6

0.680 6341.78 48540.7

is a significant increase in the value of ETC without investment compared to that

of ETC with investment. Therefore, it can reasonably be concluded that making an

investment turns out to be significantly profitable for the supply chain as a whole,

especially when the percentage of defectives produced is high.

5 Concluding Remarks

An attempt is made in this paper to analyze the problem of variable lead-time for an

integrated single-vendor single-buyer imperfect production-inventory model under

optimal vendor investment. It is shown that, as in the case of constant lead-time, for

the variable lead-time model also, the investment by the vendor helps in reducing the

production yield rate of non-defective items. Further, in case of the vendor making

such an investment, the integrated system is better optimized in terms of minimizing

the joint expected annual total cost. As a scope of future research, the variable lead-

time may be assumed to be controllable. Also, setup cost reduction, inspection errors,

variable shipment size, multiple buyers, etc., may also be included.
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