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An Integrated Imperfect
Production–Inventory Model
with Optimal Vendor Investment
and Backorder Price Discount

Anindita Mukherjee, Oshmita Dey and B. C. Giri

Abstract In this article, an integrated single-vendor single-buyer imperfect
production–inventory model in which the vendor makes investment for process qual-
ity improvement and the buyer offers price discounts for backorders is studied. It is
assumed that the buyer follows a continuous review policy with lot-size-dependent
lead-time and a mixture of backorders and lost sales. Under the n-shipment policy,
the expected annual total cost of the integrated system is derived. An algorithm is
developed to determine numerically the optimal decisions of the model. A numerical
example is taken to illustrate the developed model and to examine the sensitivity of
the key parameters of the model. Some managerial insights are also provided.

Keywords Inventory · Integrated model · Defective items · Backorder price
discount

1 Introduction

The problem of a single-vendor single-buyer inventory model and its various exten-
sions have been an area of interest among the practitioners of operations research
for quite some time, and a significant amount of literature is available in this re-
gard. For instance, Goyal in [7] was among the first researchers to investigate an
integrated inventory model for a single-vendor single-buyer system. Banerjee in [1]
generalized the previous model and presented a joint economic lot-size model with
the vendor producing items on a lot-for-lot basis. Goyal in [8] further extended this
model by relaxing the assumptions of the lot-for-lot policy. Ha and Kim in [10]
further generalized this model and developed an integrated lot-splitting model to
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facilitate multiple shipment in small lots. Hill in [11] proposed a more generalized
batching and shipment policy. Pa and Yang in [21] extended the model developed
by Goyal in [8] by considering lead-time to be a decision variable. Pa and Yang
in [24] developed a model where deterministic variable lead-time and quality im-
provement were considered. Ben-Daya and Hariga in [3] extended the literature on
single-vendor single-buyer integrated inventory model by assuming stochastic de-
mand and thereby allowing shortages. Since then a lot of researchers, viz. Hsiao [12],
Glock [5, 6], have also made significant contributions in this area. However, in most
of these cases, process quality and its effect on the production shipment schedule
from the vendor to the buyer were not considered. But, in real-life situations, the
production process is generally not perfect. And assuming it to be so is an unrealistic
restriction imposed on the model. Porteus [22] was the first to introduce the concept
of process quality control and introduced the logarithmic investment function for this
purpose. Rosenblatt and Lee in [23] extended this model to the EPQ model. Since
then the concept of process quality improvement has been a focal area of interest
among researchers. For instance, Zhang and Gerchak in [25] considered a joint lot
sizing and shipment policy where the percentage of defectives units is assumed to be
random, and that at the end of the screening period, the defective items are returned
as a single batch. Ben-Daya and Hariga in [2] developed an economic lot scheduling
problem assuming imperfect production process. A practical approach to the EPQ
model with imperfect items was proposed by Goyal, Cardenas-Barron in [9]. Huang
in [13] developed an integrated vendor–buyer inventory model for items with imper-
fect quality, where it is assumed that the number of defective items follows a given
distribution. Ouyang et al. in [19] also investigated an integrated model with imper-
fect production process. Lin in [18] considered an integrated supply chain inventory
model with imperfect quality items, controllable lead-time, and distribution-free de-
mand. Recently, Dey and Giri in [4] extended existing literature on integrated models
by considering vendor investment for process quality improvement in a stochastic
integrated inventory model, thereby allowing the percentage of defective items pro-
duced to be a control parameter. However, in this model, the shortages were assumed
to be completely backlogged. However, it is seen in most cases that, when shortage
occurs, while some customers may be willing to wait for their order to arrive at a
later stage (backorders), some may be unwilling to do so and may wish to take their
orders elsewhere (lost sales). But, incurring lost sales reflect poorly on the customer’s
goodwill. One way of preventing the percentage of lost sales is to offer a backorder
price discount to motivate customers to wait for their orders to arrive with the next
batch instead of taking them elsewhere. That is, the buyer may offer the backordered
items at a discounted price so as to try and increase the proportion of backorders
vis-a-vis lost sales. For instance, an integrated supply chain vendor–buyer model
was proposed by Lin [17] where backorder price discount and effective investment
required to reduce the ordering cost were considered. Jaggi and Arneja in [14] inves-
tigated the periodic review inventory model with backorder price discounts where
shortages were partially backlogged. Pal and Chandra in [20] studied a periodic re-
view inventory model with stock-dependent demand, permissible delay in payment,
and backorder price discount. Ahamed in [15] developed the lot-size decision for
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stochastic vendor–buyer system with quantity discount and partial backorder. Jindal
and Solanki in [16] studied an integrated supply chain inventory model with quality
improvement involving controllable lead-time and backorder price discounts.

Keeping these various issues in mind, an attempt is made to extend existing
literature on single-vendor single-buyer integrated inventory models by developing
an integrated inventory model with optimal vendor investment and backorder price
discount. The model is also investigated under both constant and lot-size-dependent
lead-time.

The rest of the paper is organized as follows: In Sect. 2, the proposed model is
formulated, and the solution procedure is outlined in Sect. 3. Section4 illustrates the
developed model with the help of numerical examples. The paper is concluded in
Sect. 5 with some remarks and future research directions.

2 Model Development

2.1 Notations and Assumptions

The following notations are used for developing the proposed model:

D: Expected demand rate for non-defective items
P: Production rate for the vendor (P = 1/p)
A: Ordering cost per order for the buyer
F : Transportation cost per delivery
B: Setup cost for the vendor
L: Lead-time
Q: Order quantity
hv: Holding cost per item per unit time for the vendor
hb1: Holding cost for defective items per unit time for the buyer
hb2: Holding cost for non-defective items per unit time for the buyer
n: The number of shipments per production run from the vendor to the buyer
r : Reorder point
s: Screening cost per unit item for the buyer
x : Buyer’s screening rate
w: Warranty cost per unit defective item for the vendor
k: Safety stock factor
y: Percentage of defective items produced
η: Fractional annual opportunity cost
δ: Percentage decrease in defective items per dollar increase in investment
β: Fraction of the shortage that will be backordered at the buyer’s end

(0 ≤ β < 1)
β0: Upper bound of the backorder ratio, (0 ≤ β ≤ β0 ≤ 1)
πx : Unit backorder price discount
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Fig. 1 Inventory of the buyer

π0: Marginal profit per unit
X : Lead-time demand.

The model is based on the following assumptions (Figs. 1 and 2):

• A single vendor provides single type of item to a single buyer.
• Demand per unit time is normally distributed with mean D and standard deviation

σ .
• The buyer orders quantity of nQ items to the vendor which then the vendor pro-
duces at one go and delivers in n equal-sized shipments of Q items each to the

Fig. 2 Inventory of the vendor
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buyer. The production rate of non-defective items is assumed to be greater than
the demand rate, i.e., P(1 − y) > D.

• The buyer follows the (Q, r) continuous review policywith constant lead-time and
partial backlogging. The case of lot-size-dependent lead-time is also investigated.

• Percentage of backorders is β.
• In case of shortage, the buyer provides a price discount to the customers to en-
courage them to wait for their orders to arrive with the next batch.

• Lead-time L is constant, and the lead-time demand is normally distributed with
mean DL and standard deviation σ

√
L .

• The reorder point r = expected demand during lead-time + safety stock (SS), i.e.,
r = DL + kσ

√
L , where k is the safety stock factor.

• y (0 ≤ y < 1) is the percentage of defective items produced in each lot-size Q.
• The length of vendor’s production cycle is nQ(1 − y)/D, and the length of buyer’s
ordering cycle is Q(1 − y)/D.

• The screening rate x is fixed and is greater than the demand rate, i.e., x > D.
• The vendor pays a warranty cost for each defective item produced.
• The marginal profit per unit is same as the cost of lost demand (opportunity cost)
per unit.

• Investment is made by the vendor in order to improve the production process
quality in terms of buying new equipment, worker training, improving machine
maintenance and repair, etc. The logarithmic investment function I (y) given by

Porteus in [22] is assumed as I (y) = 1
δ
ln

(
y0
y

)
, where δ is the percentage decrease

in y for a dollar increase in investment and y0 is the percentage of defective items
produced prior to investment.

2.2 Buyer’s Perspective

Assuming the lead-time demand X to be a random variable with associated pdf
fx (X), the expected shortage at the end of a cycle is given by

E(X − r)+ =
∫ ∞

r
(x − r) fx (X)dx (1)

Sinceβ is assumed to be the percentage of backorders, therefore the expected number
of backorders per cycle is βE(X − r)+. Thus, the expected stockout cost per unit
time is

D

Q(1 − y)

[
πxβ + π0(1 − β)

]
E(X − r)+ (2)

Further, the backorder ratio, β, is taken to be a control parameter and is
assumed to be in proportion to the unit price discount offered by the buyer. That
is, β = (β0πx )/π0, where 0 ≤ β0 < 1 and 0 ≤ πx ≤ π0.
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Therefore, the backorder price discount offered by the buyer for each unit of the
item, πx , may be treated as a decision variable in place of the backorder rate, β.
Hence, the expected stockout cost per unit time may be written as

D

Q(1 − y)

[
(β0π

2
x /π0) + π0 − β0πx

]
E(X − r)+ (3)

Also, the expected net inventory level for non-defective items (just before the arrival
of an order) is

r − DL + (1 − β)E(X − r)+ (4)

And, the expected net inventory level for non-defective items (just after the shipment)
is

Q(1 − y) + r − DL + (1 − β)E(X − r)+ (5)

Thus, the average non-defective inventory per cycle is given by:

Q(1 − y)

2
+ r − DL + (1 − β)E(X − r)+ (6)

Further, on the arrival of the order, the buyer inspects the items at a fixed screening
rate x . Here, as is suggested by Dey and Giri in [4], it is assumed that the screening
process is nondestructive and error-free and that the buyer incurs two types of holding
costs—for defective items and non-defective items (including those defective items
which have not yet been detected before the end of the screening time). So, the
average inventory for non-defective items is

nQ(1 − y)

D

[
kσ

√
L + Q(1 − y)

2
+ DQy

2x(1 − y)
+ (1 − β)E(X − r)+

]
(7)

where
r = DL + kσ

√
L (8)

Similarly, the average inventory level for defective items is given by [4]

nQ2y[ (1 − y)

D
− 1

2x
] (9)

The resulting expected annual total cost for the buyer, including the shipment cost,
ordering cost, inventory holding cost, shortage cost, and screening cost is, therefore,
given by
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ETCB(Q, k, n, y, πx ) = D(A + nF)

nQ(1 − y)
+ hb1

(
Qy − DQy

2x(1 − y)

)

+ hb2

[
kσ

√
L + Q(1 − y)

2
+ (1 − β0πx

π0
)E(X − r)+ + DQy

2x(1 − y)

]

+ D

Q(1 − y)

[
β0π

2
x

π0
+ π0 − β0πx

]
E(X − r)+ + sD

1 − y
(10)

where 0 ≤ πx ≤ π0, 0 < y ≤ y0, and E(X − r)+ is the expected demand shortage
at the end of the cycle. Since r = DL + kσ

√
L , then the expected demand shortage

at the end of the cycle is obtained as

E(X − r)+ = σ
√
Lψ(k) (11)

where ψ(k) ≡ φ(k) − k[1 − φ(k)] > 0.
Here, ψ(k) and φ(k) denote the standard normal probability density function and

distribution function, respectively. Putting these values in (11), the cost expression
for the buyer is obtained as

ETCB(Q, k, n, y, πx ) = D(A + nF)

nQ(1 − y)
+ hb1

(
Qy − DQy

2x(1 − y)

)
+ sD

1 − y

+ hb2

[
kσ

√
L + Q(1 − y)

2
+ (1 − β0πx

π0
)σ

√
Lψ(k) + DQy

2x(1 − y)

]
+

+ D

Q(1 − y)

[
π0 − β0πx + β0π

2
x

π0

]
σ
√
Lψ(k) (12)

where 0 < y ≤ y0, 0 ≤ πx ≤ π0.
Since β = β0πx

π0
, thus, when β = β0, we get πx = π0 and

π0 − β0πx + β0π
2
x

π0
= π0 = πx (13)

Thus, when β = β0, we get the case where no price discount is offered, then Eq. (12)
reduces to

ETCB(Q, k, n, y, πx ) = D(A + nF)

nQ(1 − y)
+ hb1(Qy − DQy

2x(1 − y)
) + sD

1 − y

+ hb2[kσ
√
L + Q(1 − y)

2
+ (1 − β0)σ

√
Lψ(k) + DQy

2x(1 − y)
]

+ D

Q(1 − y)
πxσ

√
Lψ(k) (14)

Further, if β = β0 = 1 (fully backordered), then πx = π0 and the buyer’s cost
expression reduces to,
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ETCB(Q, k, n, y, πx ) = D(A + nF)

nQ(1 − y)
+ hb1(Qy − DQy

2x(1 − y)
)

+ hb2[kσ
√
L + Q(1 − y)

2
+ DQy

2x(1 − y)
]

+ D

Q(1 − y)
πxσ

√
Lψ(k) + sD

1 − y
(15)

In this case, πx is no longer the marginal price discount but the actual shortage cost
is per unit item, which is the same as obtained by Dey and Giri in [4].

2.3 Vendor’s Perspective

The vendor produces Q items in the first instance and delivers them to the buyer.
After that, the vendor delivers a quantity of Q units to the buyer every T units of
time where T = Q(1−y)

D . This process continues till the completion of the vendor’s
production run.

The average inventory holding area for the vendor is as given by Huang in [13]

ETCV (Q, n, y) = hv

Q

2

[
(n − 1) − (n − 2)

Dp

1 − y

]
(16)

The annual expected total cost obtained by the vendor is the sum of the setup cost,
holding cost, and warranty cost for the defective items (as given by Huang [13]).

ETCV (Q, n, y) = BD

nQ(1 − y)
+ hv

Q

2

[
(n − 1) − (n − 2)

Dp

1 − y

]
+ wDy

1 − y
(17)

Adding the investment cut for improvement of production process quality as given
by Dey and Giri [4], the expected annual total cost of the vendor can be derived as

ETCV (Q, k, y, n, πx ) = BD

nQ(1 − y)
+ hv

Q

2

[
(n − 1) − (n − 2)

Dp

1 − y

]

+ wDy

1 − y
+ η

δ
ln

(
y0
y

)
(18)

where η is the fractional opportunity cost.
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2.4 Integrated Approach

The expected annual cost of the integrated system is the sum of the vendor’s and the
buyer’s expected annual costs and is therefore obtained as

ETC(Q, y, k, n, πx ) = D(A + B + nF)

nQ(1 − y)
+ hb1

[
Qy − DQy

2x(1 − y)

]
+ D(s + wy)

1 − y

+ hb2

[
kσ

√
L + Q(1 − y)

2
+ DQy

2x(1 − y)
+

(
1 − β0πx

π0

)
σ
√
Lψ(k)

]

+ η

δ
ln

(
y0
y

)
+ D

Q(1 − y)
G1(πx )σ

√
Lψ(k)

+ hv
Q

2

[
(n − 1) − (n − 2)

Dp

1 − y

]
(19)

where
G1(πx ) = (π0 − β0πx + β0π

2
x /π0) < 0 (20)

(because π0
πx

> β0

(
1 − πx

π0

)
> 0)

3 Solution Procedure

In the above objective function, the control parameters are Q, y, k, n, and πx . It is
very difficult to show analytically that ETC is a convex function in all the decision
variables. However, it can be verified numerically that for given values of n (positive
integer), y(0 < y ≤ y0 < 1), and πx , the total cost function ETC is convex in Q and
k (refer Fig. 4). It can also be shown that, all other parameters being known, ETC is
convex w.r.t. y (refer Fig. 3). In the following section, a solution procedure is outlined
to derive the optimal values of Q, y, k, n, and πx such that the joint expected annual
total cost ETC is minimized.

The total cost function ETC can be shown to be convex in n and πx , respectively,
as

∂2ETC

∂n2
= 2D(A + B)

n3Q(1 − y)
> 0 ∀ n ≥ 1 (21)

∂2ETC

∂π2
x

= 2D
√
Lσβ0ψ(k)

Q(1 − y)π0
> 0 (22)

Keeping in mind the potential non-convexity of the model, an iterative procedure is
suggested to derive the optimal values of the control parameters as follows:

For fixed n, the first derivative of ETC with respect to k is put to zero. That is,
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Fig. 3 ETC w.r.ty
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Fig. 4 ETC w.r.t Q, k

∂ETC

∂k
= hb2

[
σ
√
L +

(
1 − β0πx

π0

)
σ
√
Lψ(́k)

]
+

[
DG1(πx )σ

√
Lψ ′(k)

Q(1 − y)

]
= 0 (23)

Or,

∂ETC

∂k
= hb2

[
σ
√
L +

(
1 − β0πx

π0

)
σ
√
L(F(k) − 1)

]
+ DG1(πx )σ

√
L(F(k) − 1)

Q(1 − y)
= 0 (24)

where F(·) is the standard normal distribution function.
This implies

F(k) = hb2
H1

= H2(say) (25)

where H1 = hb2(1 − β0πx/π0) + DG1(πx )

Q(1−y) and F(·) = 1 − F(·).
Similarly we have
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∂ETC

∂Q
= − DG(n)

Q2(1 − y)
+ yhb1

(
1 − D

2x(1 − y)

)
− D

√
(L)G1(πx )σψ(k)

Q2(1 − y)

+ hb2

[
1 − y

2
+ Dy

2x(1 − y)

]
+ hv

2

[
(n − 1) − (n − 1)

Dp

1 − y

]
= 0

(26)

∂ETC

∂y
= Dw

1 − y
+ D(t + wy)

(1 − y)2
− η

yδ
+

[
D

√
(L)G1(πx )σψ(k)

Q(1 − y)2

]

+ DG(n)

Q(1 − y)2
+ Qhb1

[
1 − D

2x(1 − y)
− Dy

2x(1 − y)2

]

− hb2[−Q

2
+ DQ

2x(1 − y)
+ DQy

2x(1 − y)2
] + Qhv

2

[
D(n − 2)p

(1 − y)2

]
= 0

(27)

∂ETC

∂πx
= D

√
(L)(−β0 + 2β0πx/π0)σ

√
(L)ψ(k)

Q(1 − y)
−

[
β0

√
(L)σhb2ψ(k)

π0

]
= 0

(28)

On simplification, (26) reduces to:

Q =
√

DG(n) + G1(πx )Dσ
√

(L)ψ(k)

H(n, y)
(29)

where

H(n, y) = hb1[y(1 − y) − Dy

2x
] + hb2[ (1 − y)2

2
+ Dy

2x
] + hv/2−(n − 2)Dp + (n − 1)(1 − y)

(30)

From (28), we get

πx = Dπ0 + Qhb2(1 − y)

2D
(31)

It is obvious that the control parameters are not independent of each other. So, to
obtain a solution, we adapt the iterative algorithm proposed by Ben-Daya and Hariga
in [3] and adapted by Dey and Giri in [4]. First, the algorithm is initiated by setting
y = y0, where y0 is the original percentage of defective items produced. Next, an
initial value of Q is calculated by setting the stochastic parameter of Q equal to
zero in (29). After calculating Q, the value of k and πx is obtained using (25) and
(31), respectively. Then, using these values, the value of y is updated. This process
continues till the minimum cost is determined for the given value of n. The value
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of n is then updated, and the whole process is repeated till the minimum cost is
obtained. The values of the control parameters corresponding to the minimum cost
represent the optimal solution. It is to be noted that if the updated value of y is found
to be greater than the initial value y0, then the updated value is rejected. This follows
intuitively because the purpose of vendor investment is to improve the production
process and failure to do so negates the purpose itself. The method is encapsulated
in an algorithm below:

3.1 The Algorithm:

Step 1: Set ETC∗ = ∞ and n = 1;
Step 2: Set y = y0 and compute Q0 = √

DG(n)/H(n, y);
Step 3: Find k from ψ(k) = ∫ ∞

k (z − k)φ(z)dz from (25).
Step 4: Compute πx using (31).
Step 5: Compute y from (27).
Step 6: Compute Q, from (29) using k, y and πx . If |Q − Q0| ≤ ε, compute

ETC(Q, k, y, n, πx ) and go to step 7. Else set Q0 = Q and go to step
3;

Step 7: If ETC∗ ≥ ETC , Set ETC∗ = ETC , Q∗ = Q, y∗ = y, k∗ = k,
n = n + 1 and go to step 2; Else n∗ = n − 1 and stop.

The corresponding values of the control parameter for n∗ = n − 1 give the optimal
solution.

Now, partially deriving ETC with respect to w, δ, and y0 we get

∂ETC

∂w
= Dy

1 − y
> 0 (32)

∂ETC

∂δ
= − η

δ2
ln

(
y0
y

)
< 0 (33)

∂ETC

∂y0
= η

y0δ
> 0 (34)

From above Eqs. (32)–(34), we observe that ETC increases with an increase in
warranty cost w and also with an increase in the original percentage of defective
items y0. For a higher warranty cost, the integrated systems expected total cost will
increase and there will also be an increase in the backorder price discount. Also,
production of items of very poor quality will result in an increase in the expected
total cost of the system. Increasing δ implies that the number of defective items
decreases with an increase in the investment amount and, thus, the expected total
cost of the system. That is, it costs less to improve the production process quality of
the system. To further highlight the effects of process quality, the investment, and
other model parameters on the optimal inventory decisions, numerical studies are
presented in the following section.
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4 Numerical Examples

For numerical studies,we consider the followingdata set: D = 1000, P = 3200, A =
50, B = 400, F = 35, L = 10/365, hv = 4, hb1 = 6, hb2 = 10, t = 0.25, s = 100,
x = 2152, w = 24, y = 0.22, η = 0.2, δ = 0.0002, σ = 5, π0 = 150, β0 = 0.2.

4.1 With Constant Lead-Time

Tables1, 2, 3, and 4 show the effects of various parameters on the integrated system
when the lead-time is constant. (Here z∗ denotes π∗

x which is the optimal value of
the value of the unit backorder price discount.)

4.2 With Variable Lead-Time

Tables5, 6, 7, and 8 show the effects of various parameters on the integrated system
when the lead-time is taken to be dependent on the lot-size in the form L = pQ + b.

Tables1 and 5 show that the production lot-size increases with an increase in
demand rate, which is very obvious since the buyer would need to place an order
of a larger quantity to satisfy the increase in demand. Also, there is an increase in
the quantity of both defective and non-defective items produced with an increase in

Table 1 Effect of demand rate

D Q∗ n∗ y∗ ETC∗ I (y∗) k∗ π∗
x

800 84.3442 6 0.044 4911.59 1593.71 2.40639 75.5036

900 90.1529 6 0.040 5153.64 1698.4 2.38026 75.4807

1000 95.8221 6 0.036 5375.09 1792.89 2.35630 75.4616

1100 91.6176 7 0.033 5576.63 1877.08 2.37178 75.4024

1200 96.7118 7 0.031 5762.07 1956.02 2.35073 75.3904

Table 2 Effect of production rate

P Q∗ n∗ y∗ ETC∗ I (y∗) k∗ π∗
x

2800 87.9689 7 0.036 5335.41 1788.90 2.38794 75.4327

3000 87.1628 7 0.036 5357.04 1790.10 2.39131 75.4198

3200 95.8221 6 0.036 5375.09 1792.89 2.35630 75.4616

3400 95.2388 6 0.036 5389.66 1793.67 2.35855 75.4588

3600 94.7290 6 0.036 5402.55 1794.37 2.36053 75.4563
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Table 3 Effect of parameters w and δ

Q∗ n∗ y∗ ETC∗ I (y∗)
w 20 96.154 6 0.042 5210.09 1633.98

24 95.8221 6 0.036 5375.09 1792.89

30 95.4785 6 0.030 5580.52 1991.91

δ 0.00020 95.8221 6 0.036 5375.09 1792.89

0.00024 95.5229 6 0.030 5062.51 1636.14

0.00030 95.2203 6 0.024 4718.35 1449.84

Table 4 Effect of y0
y0 Q∗ n∗ y∗ ETC∗ I (y∗)
0.040 95.8221 6 0.036 3670.34 88.1429

0.100 95.8222 6 0.036 4586.63 1004.43

0.220 95.8221 6 0.036 5375.09 1792.89

0.418 95.8221 6 0.036 6016.94 2434.74

0.680 95.8221 6 0.036 6503.55 2921.34

Table 5 Effect of demand rate

D Q∗ n∗ y∗ ETC∗ I (y∗) k∗ π∗
x

800 75.5015 6 0.044 4915.07 1593.91 2.40789 75.5015

900 89.7808 6 0.040 5157.81 1698.60 2.38173 75.4787

1000 86.1346 7 0.036 5379.64 1791.32 2.39559 75.4149

1100 91.2576 7 0.033 5581.09 1877.27 2.37316 75.4008

1200 96.3325 7 0.031 5767.17 1956.20 2.35211 75.3889

Table 6 Effect of production rate

P Q∗ n∗ y∗ ETC∗ I (y∗) k∗ π∗
x

2800 87.5897 7 0.037 5340.82 1789.11 2.38946 75.4218

3000 86.8042 7 0.037 5361.61 1790.30 2.39276 75.4181

3200 86.1346 7 0.036 5379.64 1791.21 2.39559 75.4149

3400 85.5569 7 0.036 5395.42 1792.21 2.39804 75.4121

3600 94.3689 6 0.036 5406.08 1794.54 2.36189 75.4546
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Table 7 Effect of parameters w and δ

Q∗ n∗ y∗ ETC∗ I (y∗)
w 20 86.4461 7 0.043 5214.35 1632.12

24 86.1346 7 0.036 5379.64 1791.32

30 95.0873 6 0.030 5585.32 1992.07

δ 0.00020 86.1346 7 0.036 5379.64 1791.32

0.00024 95.1318 6 0.030 5067.32 1636.43

0.00030 94.8299 6 0.024 4723.12 1449.87

Table 8 Effect of y0
y0 Q∗ n∗ y∗ ETC∗ I (y∗)
0.040 86.1346 7 0.037 3674.90 86.5660

0.100 86.1346 7 0.037 4591.19 1002.86

0.220 86.1346 7 0.036 5379.64 1792.32

0.418 86.1345 7 0.036 6021.50 2433.18

0.680 86.1344 7 0.036 6508.11 2919.78

the lot-size, and consequently, the amount of investment required to optimize the
expected annual total cost also increases. Again, we see that an increase in demand
causes a decrease in the safety stock factor and the unit backorder price discount also
decreases. All these intuitively correct effects are illustrated numerically.

Tables2 and 6 show that an increase in the production rate simultaneously increas-
es the number of defective and non-defective items produced and hence results in
an increase in the amount of investment required to improve the production process
quality which in turn increases the expected total cost of the system.

A significant conclusion that can be reached fromTables4 and 8 is that the original
quality and the investment required to improve the production process quality are not
independent. That is, the original production process quality decides the necessity
of an investment and the extent of it being beneficial to the supply chain. This is
evident from Table1 which clearly shows that investment to improve the production
process quality is not needed when the original percentage of defectives is very
low. However, the amount of investment required to optimize the integrated system
increases noticeably with an increase in the value of y0.

Tables3 and 7 depict that the optimal total cost incurred by the supply chain
increases with an increase in the warranty cost w paid by the vendor. Also, an
increase in warranty cost results in a decrease in the optimal value of the percentage
of defective items. This is intuitively correct because, as the vendor is required to pay
a higher warranty cost as a penalty for defective item being produced, a considerable
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decrease in the number of defective items produced would reasonably be favorable
for him. Following the same logic, an increase in the value of δ should imply a
decrease in the expected annual total cost of the system as also shown in Tables3
and 7.

5 Managerial Insights and Some Concluding Remarks

The paper presents a single-vendor single-buyer integrated imperfect production–
inventory model with vendor investment and backorder price discount. It is assumed
that the vendor makes an investment for improving the production process quality. A
simple iterative procedure is suggested to obtain an optimal solution of the proposed
model in terms of minimizing the total cost incurred. It is shown through numerical
examples, under various scenarios, that the production rate of defective items is
reduced when the vendor makes an investment. This investment made by the vendor
helps in reducing the expected annual total cost, thereby resulting in abetter optimized
integrated system. It is also evident from the numerical studies that an increased
investment is required for an increased demand rate to minimize the total cost. As
a scope of future research work, the proposed model can be extended in terms of
variable shipment size, inspection errors, controllable lead-time, multiple buyers,
etc.
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