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Introduction

Chromium(VI) acts as a powerful oxidizing agent in differ-
ent types of redox reactions and is converted into 
chromium(III). Different mechanistic routes have been 
suggested for the reduction of chromium(VI) to 
chromium(III) from analysis of kinetic data and other 
experimental findings. The mode of reduction largely 
depends on the nature of the reductant and the experimental 
conditions.1–4 Intermediates like Cr(V) and Cr(IV) have 
been identified and characterized in many cases. To explore 

all these aspects, Cr(VI) has been extensively studied in 
redox kinetics. Here, it is important to note that Cr(VI) is 
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hazardous because of its carcinogenic and mutagenic  
activity.5–8 This is why studies on the kinetics and mecha-
nism of Cr(VI) oxidation of biologically relevant reducing 
agents are of interest to both biochemists and inorganic 
chemists.1,3 During the reduction of Cr(VI) to Cr(III), the 
intermediate oxidation states of chromium may interact 
with biologically active molecules and induce toxicity.3 
Thus, in terms of chromate toxicity, it is reasonable to 
assume that the reducing agent may have an important role. 
The present research paper deals with three-electron (3e) 
transfer Cr(VI) oxidation of d,l-mandelic acid in the pres-
ence of 1,10-phenanthroline as a catalyst. It was reported 
by Dominic and Rocek9,10 that uncatalysed chromic acid 
oxidation of d,l-mandelic acid proceeds via three-electron 
transfer as the rate-determining step and involves simulta-
neous rupture of ‘C–C’ and ‘C–H’ bonds within a cyclic 
transition state. Here, it is worth mentioning that mandelic 
acid is quite interesting among α-hydroxy acids because on 
chromic acid oxidation it experiences 3e-transfer9,10 during 
the rate-determining step, while most other α-hydroxy 
acids experience 2e-transfer11–15 under comparable condi-
tions. In fairly recent work, Panigrahi and Sahu16 proposed 
a 2e-transfer process for the chromic acid oxidation of d,l-
mandelic acid. According to them, d,l-mandelic acid 
behaves like other α-hydroxy acids during chromic acid 
oxidation. Hence, in the literature, there is a conflict in the 
behaviour of d,l-mandelic acid on chromic acid oxidation. 
This prompted us to carry out a detailed investigation under 
different conditions, that is, uncatalysed reactions and 
chelating-agent-catalysed reactions. The micellar effects on 
both the uncatalysed and Phen-catalysed reactions have 
been studied to substantiate the proposed reaction 
mechanism.

Results and discussion

Dependence on [Cr(VI)]T

Under the experimental conditions, [d,l-mandelic acid]T 
>> [Phen]T >> [Cr(VI)]T, both in the presence and 

absence of Phen, the rate of disappearance of Cr(VI) shows 
a first-order dependence on Cr(VI). This first-order depend-
ence on Cr(VI) is also maintained in the presence of the 
surfactant N-cetylpyridinium chloride (CPC). The pseudo 
first-order rate constants (kobs) have been evaluated from 
the linear plot of log[Cr(VI)]T versus time (t) (Figure 1).

Dependence on [Phen]T

The plots of kobs versus [Phen]T are linear (r > 0.99) with 
positive intercepts indicating the contribution of the rela-
tively slower uncatalysed path (Figure 2). The pseudo first-
order rate constants (kobs(u)) directly measured in the absence 
of Phen under the same conditions nicely agree with those 
obtained from the intercepts of the plots of kobs(T) versus 
[PA]T. In Figure 2, plots (a), (b) and (c) refer to the kinetic 
studies of the [1,10-phen] concentration variation at differ-
ent temperatures (20 °C, 30 °C and 40 °C), respectively.

Dependence on [S]T, that is, [d,l-mandelic 
acid ]T

From the plot of kobs versus [d,l-mandelic acid]T (Figure 3), 
it has been established that both the catalysed and uncata-
lysed paths show first-order dependence with respect to 
[S]T, that is, the first-order dependence with respect to [S]T 
is also maintained in the presence of surfactants, for exam-
ple, CPC. The values of ks(c) and ks(u) are given in Table 1.

Dependence on [H+]

The acid dependence patterns for the uncatalysed and cata-
lysed paths are the same first-order dependence (Figure 4). 
From the experimental fit, the observations are as follows

k k kobs u o u H u H( )
+= +  ( ) ( )

k k k k kobs c obs T obs u o c H c H  ( )
+= − = +  { }( ) ( ) ( ) ( )

Thus, the observed rate laws are as follows
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Figure 1.  Plot of log[Cr(VI)]T versus time (t): [Cr(VI)]T = 6 × 10−4 mol dm−3, [d,l-mandelic acid] = 6 × 10−3 mol dm−3, 
[H2SO4] = 0.25 mol dm−3, T = 30 °C.
Plot (a) [1,10-phen] = 0 mol dm−3, (b) [1,10-phen] = 12 × 10−4 mol dm−3, (c) [1,10-phen] = 24 × 10−4 mol dm−3 and (d) [1,10-phen] = 36 × 10−4 mol dm−3.
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Figure 2.  [Cr(VI)]T = 6 × 10−4 mol dm−3, [d,l-mandelic acid] = 6 × 10−3 mol dm−3, [H2SO4] = 0.25 mol dm−3, [1,10-phen] = (0–
36) × 10−4 mol dm−3. Plot (a) 20 °C, (b) 30 °C and (c) 40 °C.
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Figure 3.  [Cr(VI)]T = 6 × 10−4 mol dm−3, [1,10-
phen] = 12 × 10−4 mol dm−3, [H2SO4] = 0.25 mol dm−3, 
[d,l-mandelic acid] = (6–14) × 10−3 mol dm−3, 
[CPC] = 20 × 10−3 mol dm−3, T = 30 °C. Plot (a) 
[CPC] = 0 mol dm−3, (b) [CPC] = 20 × 10−3 mol dm−3.
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Test for acrylonitrile polymerization

Under the experimental conditions, polymerization of acry-
lonitrile occurred under a nitrogen atmosphere. This indi-
cates the generation of free radicals during the reaction.

Evaluation of the activation 
parameters

From the studies of the effect of temperature on the rate 
constant (k), the activation parameters, ΔH≠ (enthalpy of 
activation) and ΔS≠ (entropy of activation), have been eval-
uated (Figure 5) by using the Eyring equation

− ( ) = −≠ ≠ ln  Bkh k T H RT S R/ / /∆ ∆

where kB is the Boltzmann constant (1.38 × 10−23 J K−1), h is 
Planck’s constant (6.62 × 10−34 J s−1) and R is the molar gas 
constant (8.31 J K−1 mol−1). Free energy of activation (ΔG≠) 
and its errors can also be calculated from the following 
equations

∆G RT k T hk≠ = ( )ln B /

and

 δ δ∆G RT k k≠ = ( / )

Mechanism and interpretation

Reaction mechanism for the Phen-assisted chromic acid oxida-
tion of mandelic acid.  The results obtained from the Phen-
assisted reactions can be explained by considering the 
reaction mechanism outlined in Scheme 1. Here, Phen 
readily forms a reactive cyclic Cr(VI)-Phen complex A in 
the acid-catalysed reaction with HCrO4

−, and this Cr(VI)-
Phen complex is the active oxidant.8,15,18–22 In the next 
step, this Cr(VI)-Phen complex reacts with the substrate to 
form two ternary complexes B and C. Ternary complexes 
B and C differ only in the extent of protonation and both 
are kinetically active. These ternary complexes undergo 
redox decomposition through 3e-transfer within the cyclic 
transition state as the rate-determining step, involving 
simultaneous rupture of the C–C and C–H bonds leading to 
a benzoyl radical, carbon dioxide and a Cr(III)-Phen com-
plex. Subsequently, the benzoyl radical reacts rapidly to 
form the benzaldehyde.

The observed rate law is

k k kobs c 1 c 2 c T T
 H   L MA( )

+= +  { } [ ] [ ]( ) ( )
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Effect of CPC

Catalysed path: For N-cetylpyridinum chloride (CPC), a 
representative cationic surfactant, the plot of kobs(c) versus 
[CPC]T (Figure 6) shows a steady decrease and eventually 
levels off at higher concentration of CPC. This observation 
is similar to that observed by Bunton and Cerichelli23 in the 
oxidation of ferrocene by ferric salts of the presence of the 
cationic surfactant cetyltrimethyl ammonium bromide 
(CTAB). Similar observations have also been noted by 
Panigrahi and Sahu24 in the oxidation of acetophenone by 
Ce(IV) in the presence of N-dodecylpyridinium chloride 
(NDPC), by Sarada and Reddy,25 in the oxalic acid–cata-
lysed oxidation of aromatic azo-compounds by Cr(VI) in 
the presence of SDS, and by us in the chromic acid oxida-
tion of d-glucose,26 and propan-1-ol27 in the presence of 
CPC.

The neutral substrate can be partitioned in the Stern 
layer of the micellar phase due to favourable H-bonding 

and ion–dipole interactions.1 In the Phen-catalysed path-
way, the positively charged micellar head groups of CPC 
electrostatically restrict the positively charged Cr(VI)-Phen 
complex A in the aqueous phase and thus the accumulated 
neutral substrate in the micellar phase (Stern layer) cannot 
participate in the reaction in the aqueous phase. 
Consequently, the overall rate is retarded. Partitioning of 
the reactants between the aqueous and micellar phases is 
shown in Scheme 2, in which Sn represents the micellized 
surfactants, n is the aggregation number, w is the aqueous 
medium and m is the micellar medium.

Conclusion

In the Phen-assisted path, a Cr(VI)-Phen complex, a cati-
onic species has been found to act as the active oxidant. In 
the Phen-assisted path, the Cr(VI)-Phen complex under-
goes a nucleophilic attack by the d,l-mandelic acid to form 

Table 1.  Kinetic parameters and some representative rate constants for the Cr(VI) oxidation of d,l-mandelic acid in the presence 
of 1,10-phenanthroline in aqueous solution.

Temp 104kobs(u)(w)
a 102 kcat(w)

a ks(c)(w)
b ks(c)(CPC)

b 105kH(u)(w)
c 105kH(c)(w)

d keff(w)

(°C) (s−1) (dm3 mol−1 s−1) (dm3 mol−1 s−1) (dm3 mol−1 s−1) (dm3 mol−1 s−1) (dm3 mol−1 s−1)

20 0.8254 11.2 2.445
30 1.3708 12.4 0.046 0.033 3.936 7.23 1.688
40 1.957 14.4 1.414

ΔH≠ (kJ mol−1) 7.766.
ΔS≠ ( J K−1 mol−1) −239.18 (Islam and Das17).
Subscript (u) for uncatalysed path; (c) for [1,10-phen] catalysed path; (w) for the value in the absence of surfactant; (CPC) for the value in the 
presence of CPC.
kobs(u)(w) = rate constant of the uncatalysed reaction in aqueous medium.
kobs(c)(w) = rate constant of the 1,10-phenanthroline-catalysed reaction in aqueous medium.
kcat(w) = slope plot of kobs(c)(w) versus [1,10-phen] of the 1,10-phenanthroline-catalysed reaction in aqueous medium.
keff(w) = (kobs(c)(w)–kobs(u)(w))/kobs(u)(w), calculated at [1,10-phen] = 18 × 10−4 mol dm−3; [Cr(VI)] = 6 × 10−4 mol dm−3; [d,l-mandelic acid] = 6 × 10−3 mol dm−3; 
[H2SO4 ] = 0.25 mol dm−3.
a[Cr(VI)] = 6 × 10−4 mol dm−3; [d,l-mandelic acid] = 6 × 10−3 mol dm−3; [1,10-phen] = (12–36) × 10−4 mol dm−3; [H2SO4] = 0.25 mol dm−3.
b[Cr(VI)] = 6 × 10−4 mol dm−3; [d,l-mandelic acid] = (6–14) × 10−3 mol dm−3; [1,10-phen] = 12 × 10−4 mol dm−3; [H2SO4] = 0.25 mol dm−3; 
[CPC] = 20 × 10−3 mol dm−3.
c[Cr(VI)] = 6 × 10−4 mol dm−3; [d,l-mandelic acid] = 8 × 10−3 mol dm−3; [H+] = (0.25–1.25) mol dm−3.
d[Cr(VI)] = 6 × 10−4 mol dm−3; [d,l-mandelic acid] = 8 × 10−3 mol dm−3; [1,10-phen] = 12 × 10−4 mol dm−3[H+] = (0.25–1.25) mol dm−3.
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Figure 4.  [Cr(VI)]T = 6 × 10−4 mol dm−3, [1,10-
phen] = 12 × 10−4 mol dm−3[d,l-mandelic 
acid] = 8 × 10−3 mol dm−3, [H+ ] = (0.25–1.25) mol dm−3, [HClO4 
+ NaClO4] = 1.5 mol dm−3, T = 30 °C.
Plot (a) [1,10-phen] = 12 × 10−4 mol dm−3 and (b) [1,10-
phen] = 0 mol dm−3.
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Scheme 1.  Oxidation of d,l-mandelic acid (MA) by Cr(VI) in the presence of 1,10-phenanthroline as the catalyst.
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a ternary complex which subsequently undergoes a redox 
decomposition involving three-electron transfer leading to 
oxidative decarboxylation through C–C bond cleavage 
along with C–H bond cleavage. This rate-determining step 
produces a benzoyl radical, CO2 and a Cr(III)-Phen com-
plex. The benzoyl radical is subsequently oxidized to ben-
zoic acid in a faster step. The reactions have been carried 
out in aqueous micellar media. The cationic surfactant CPC 
Phen-catalysed paths have been studied. CPC was found to 
retard the Phen-catalysed path. The high value of enthalpy 
of activation, ∆H≠, indicates that the phen-catalysed path is 
favoured mainly due to very high negative value of the 
entropy of activation, ∆S≠. The negative value of ∆S≠ and 
the composite rate constant kcat support the suggested cyclic 
transition state.

Experimental and methods

Materials and reagents

1,10-Phenanthroline (Qualigens) was used after repeated 
crystallization from methanol (m.p. 136 °C). d,l-mandelic 
acid (Sisco Research Laboratories PVT Ltd., India), 
K2Cr2O7 (BDH Chemicals, India), CPC (Sisco Research 
Laboratories PVT Ltd., India) and all other chemicals were 
of highest purity available commercially. Solutions were 
prepared in doubly distilled water.

Procedure and kinetic measurements

T = 30 °C, [S]T >> [Cr(VI)]T and [Phen]T >> [Cr(VI)]T, 
acid and other necessary chemicals were separately ther-
mostated (±0.1 °C). Progress of the reactions was moni-
tored by following the rate of disappearance of Cr(VI) by 
using the titrimetric quenching technique as discussed ear-
lier.8 The pseudo first-order rate constants (kobs) were calcu-
lated as usual. Errors associated with the different rate 
constants and activation parameters were estimated.28

Product analysis and stoichiometry

Product analysis was carried out by using the 2,4-dinitro-
phenylhydrazine (DNP) test.29 The solution of the 

reaction product was treated with an excess of a saturated 
solution of DNP in dilute hydrochloric acid. The precipi-
tated 2,4-dinitrophenylhydrazone was filtered off, dried 
and recrystallized from ethanol. The melting point of the 
DNP derivative (230 °C) was found to be lower than the 
melting point (239 °C) of the DNP derivative of authentic 
benzaldehyde. This slight lowering of the m.p. was due to 
the presence of the DNP derivative of phenylglyoxylic 
acid produced as a by-product in a small amount. Thus, 
the product analysis agreed with the reports of Dominic 
and Rocek.9 Moreover, phenylglyoxylic acid was detected 
and confirmed by spot tests29,30 using a reagent solution 
prepared from a 0.3% solution of thiophene in benzene. 
The product solution was subjected to esterification by 
treatment with ethyl alcohol and concentrated sulfuric 
acid. A drop of the esterified solution was placed in a 
micro test tube and evaporated to dryness in a water bath. 
The residue was dissolved in three drops of concentrated 
sulfuric acid and treated with two drops of thiophene 
solution. A characteristic red colour appeared within 
15 min. A similar observation was noted by using an 
authentic sample of phenylglyoxylic acid.

In the reaction mixture, benzoic acid was detected and 
confirmed by a spot test.29 The product was extracted using 
n-hexane. One drop of the benzene solution was treated 
with a colourless saturated solution of Rhodamine B and 
an intense pink colour appeared. This colour intensified 
when the sample was shaken with an aqueous solution of 
uranyl acetate salts. The same identification was noted by 
using an authentic sample of benzoic acid.

Carbon dioxide was detected qualitatively31 under the 
kinetic conditions by purging dinitrogen through the reac-
tion solution and passing the effluent gas through a narrow 
tube containing Ca(OH)2. Thus, the stoichiometry of the 
reaction is

2 C H CH OH CO H  2HCrO  8H

 C H CO H  C H CHO  2CO

6 5 2 4

6 5 2 6 5 2

( ) + +

→ + +

− +

++ +2Cr  7H OIII
2

The reaction mixture solutions were scanned (in the 
range 350–700 nm) at regular time intervals by using a 
UV-Vis spectrophotometer (UV-VIS-NIR Scanning 
Spectrophotometer, UV-1800 PC, Shimadzu) to follow the 
gradual development of the reaction intermediate and the 
product spectrophotometrically (Figure 7). The plots indi-
cate the gradual disappearance of the Cr(VI) species and 
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Figure 6.  [Cr(VI)]T = 6 × 10−4 mol dm−3, [1,10-
phen] = 12 × 10−4 mol dm−3, [H2SO4] = 0.25 mol dm−3, 
[d,l-mandelic acid] = 14 × 10−3 mol dm−1, [CPC] = (0–
50) × 10−3 mol dm−3, T = 30 °C.

Scheme 2.  Distribution of the reactive species between the 
aqueous and micellar phases.
D: Cr(VI)-Phen complex; S: surfactant; MA: d,l-mandelic acid.
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the appearance of a Cr(III) species with an isosbestic point 
at λ = 525 nm.32,33 The observation of this single isosbestic 
point indicates the very low concentrations of probable 
intermediates such as Cr(V) and Cr(IV) under the present 
experimental conditions. In other words, a gradual decrease 
of Cr(VI) with a concomitant increase of Cr(III) occurs.
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