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Application of Kalman Filtering with Bayesian formulation in 
adaptive sampling

Dipika Patraa and Sanghamitra Palb 

aDepartment of Statistics, Seth Anandram Jaipuria College, Kolkata, West Bengal, India; bDepartment of 
Statistics, West Bengal State University, Berunanpukuria, West Bengal, India 

ABSTRACT 
An extensive amount of research is emphasized on survey designs and 
estimation procedures related to rare and clustered characteristics of a 
population. Adaptive Sampling design is the most applicable probabilistic 
technique to estimate the mean or total of the variable of interest, bearing 
rarity and clustered characteristics. Since rarity is regarded as a time- 
dependent feature, such surveys need to be organized constantly over 
time. No studies so far have investigated the effect of time in the estima-
tion context of Adaptive Sampling. This research therefore captures the 
need to synthesize this periodic information when conducting a survey 
using Adaptive Sampling design. A recursive process is employed here that 
improves the estimate of the population parameter from a practical per-
spective. “Kalman Filtering” is a well known recursive procedure to use 
past data. Later, statisticians were able to use that Kalman Filtering tech-
nique with the Bayesian formulation. This Bayesian approach is proposed 
to employ here to improve the estimation in the context of Adaptive 
Sampling design, utilizing the past data. A simulation study is carried out 
and it is concluded that the suggested approach substantially improves 
the estimation accuracy.
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1. Introduction

In the case of surveying a population bearing a rarity characteristic, it is difficult to obtain 
enough units in the sample with the specified rarity criteria. Moreover, traditional sampling 
methods and related estimation procedures, such as simple random sampling with or without 
replacement, stratified sampling, sampling with probability proportionate to size, may underesti-
mate the population mean or total due to the absence of a sufficient number of rare units in the 
sample. A useful method to tackle such populations is discussed in the original three papers of 
Thompson (1990, 1991a, 1991b, 1992) and known as Adaptive Sampling design for clustered 
population. Adaptive Sampling design has been recently gaining attention. A huge literature on 
Adaptive Sampling design is available. A comprehensive review of Turk and Borkowski (2005) 
covers many advents of this design. Subsequently, Brown and Manly (1998), Salehi and Seber 
(1997, 2002), Chaudhuri (2000), Chaudhuri, Bose, and Ghosh (2004, Chaudhuri, Bose, and 
Dihidar 2005), Salehi et al. (2015), Gattone et al. (2016), Salehi and Smith (2021) and many 
others, strengthened the literature of Adaptive Sampling design. In order to estimate the popula-
tion parameters, the use of an easily available auxiliary variable in the estimation stage leads to a 
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precise estimate. Ratio and regression estimators utilize auxiliary information to obtain better effi-
ciency and information gain. The use of auxiliary information in Adaptive sampling begins with 
Lee (1998). Chao (2004), Dryver and Chao (2007) suggested ratio estimators for the Adaptive 
Sampling design. Chaudhuri, Bose, and Dihidar (2005), Pal and Patra (2021, 2023) used auxiliary 
information to derive generalized regression (greg) estimators with S€arndal, Swensson, and 
Wretman (1992)’s Model-assisted approach.

Further possible way to get a precise estimate is to take into account the information from 
previous time points in the estimation procedure. Therefore, the present article proposes an 
improved estimator of the population parameter utilizing the past data, in the context of 
Adaptive Sampling. The use of time series technique adopting Kalman Filtering (KF) is quite 
effective and popular for this purpose.

It has been six decades since the Kalman Filtering (KF) technique (Kalman 1960) is introduced 
for control engineers. This technique has the similarity with two important aspects in Statistics- 
the linear regression model and time series analysis. With suitable Multivariate Statistics and 
Bayesian formulation, Meinhold and Singpurwalla (1983) developed the theory of the KF tech-
nique for statisticians though it is non-robust. A robust modification was suggested by Meinhold 
and Singpurwalla (1989) with the tool of Bayesian Statistics. The monograph of Durbin and 
Koopman (2012) covers most of the relevant theoretical developments of KF technique from 
Bayesian perspective. Chaudhuri and Maiti (1994), Chaudhuri, Adhikary, and Seal (1997) applied 
the KF technique in the context of small area estimation. However, most of the research in the 
KF technique has been done in areas other than survey sampling. It has been applied in various 
fields such as navigating satellite systems, target tracking objects, digital image processing. 
Murthy and Federer (2001) emphasized the important applications of the KF technique in a var-
iety of biological domains including Forestry, Hydrology, Fisheries, Agriculture, Environmental 
monitoring, Medicine, Biotechnology. In medical science, the KF technique has been used in clin-
ical monitoring. It is even used in animal movement modeling. Lu and Zeng (2020) applied the 
KF technique in order to predict the deformation of rock landslide. In estimating future spread 
of SARS-Cov-2, Singh et al. (2021) used this techniques, recently.

In the application of this technique, an Observation equation and a System equation are 
required. The System equation involves two terms that describe the state of nature and measure-
ment error. The Observation equation relates to the observations made in the system over time. 
Therefore, it is a two steps process - Prediction and Update, for each time point t ¼ 1, 2, :::T, 
employing the initial estimate at time t ¼ 0: In the prediction step, the KF technique estimates 
the current state variables, and the outcome of the next measurement is observed and then 
updated. Under the assumption of error structure, the prediction step is performed first through 
the Likelihood Function. Bayes rule is applied next to update the estimate.

Rare species are at higher risk of extinction. In order to perpetuate or to provide early warning 
of endangered species, usually, surveys of such populations are conducted periodically. However, 
the existing literature of Adaptive Sampling has never been addressed this fact. Thus, this 
research makes sense to use the KF technique to enhance the accuracy of the estimate of the 
population parameters when surveys are conducted by Adaptive Sampling design.

The article is organized as follows. Section 2 is designed for an extensive review of 
Adaptive Sampling design. Section 3 illustrates the actual problem driven by a practical per-
spective. Due to its practical relevance, this section proposes a way out, following Meinhold 
and Singpurwalla (1983). This is primarily applied to the Adaptive Sampling design of 
Thompson (1990). However, Sec. 4 describes the same using the Adaptive Sampling design of 
Chaudhuri (2000) instead of Thompson (1990). How well the proposed method works is 
investigated with partially fictitious data and the details are mentioned in Sec. 5. In Sec. 6, 
the concluding remarks are incorporated.
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2. Adaptive sampling

Adaptive Sampling requires an initial sample, employing a sampling design. The basic differences 
of an initial sample drawing mechanism and the estimation procedures separate Adaptive 
Sampling designs into two approaches—Thompson’s approach and Chaudhuri’s approach. 
Thompson’s approach is confined to simple random sampling with or without replacement 
whereas Chaudhuri’s approach considers varying probabilities sampling designs. Two recent trea-
tises, Seber and Salehi (2013) and Chaudhuri (2015), are cited here, considering Thompson’s 
approach and Chaudhuri’s approach for subsequent development, respectively.

With the consideration of a finite population U ¼ ð1, 2, :::, NÞ, let y ¼ ðy1, y2, :::, yNÞ be the 
variable of interest, bearing rare and clustered characteristics. In order to estimate sY ¼

PN
i¼1yi, 

the Adaptive Sampling design can be employed. The design and estimation procedures due to 
Thompson (1990) and Chaudhuri (2000) are stated below.

An initial sample s of size n is selected by a sampling design PðsÞ and the value of the variable 
of interest is observed. Whenever the observed ith ði 2 sÞ unit satisfies the pre-defined condition 
of rarity yi > c, the uniquely defined neighboring units (for example - South, North, East, and 
West) are searched for further detection of rarity. The neighborhood can be defined in different 
ways. It may consists of the unit itself and its four or eight adjacent units. Turk and Borkowski 
(2005) also noted this in their review paper. If some of those units have the rarity characteristic, 
its neighboring units are also observed. This procedure continues until a unit is detected with no 
rarity. The neighborhood relation is symmetric. In other words, if the unit i is a neighbor of the 
unit j, then j is also the neighbor of the unit i, i 6¼ j: All neighboring units related to the initial 
sampling unit form a cluster. Neighboring units that do not satisfy the condition of rarity are 
called edge units. Thus, each cluster is bounded by edge units. Eliminating all edge units from a 
cluster, the rest of the units that meet the predefined criterion of rarity belong to the network of 
that particular initial unit. It is also noteworthy that if a unit in s does not satisfy the rarity con-
dition, its network consists of that unit only. Thus, for every ith unit, a network AðiÞ has been 
formed with the network size mi: It is necessary to clarify that any unit in AðiÞ leads to the selec-
tion of all the units in AðiÞ:

According to Thompson (1990), the Horvitz–Thompson (HT, Horvitz and Thompson 1952) 
type unbiased estimator of sY is given by

tHT ¼
Xk

i¼1

y�i
ai

; (1) 

if the initial sample is selected with simple random sampling without replacement.
Here ai ¼ 1 − N−mi

n

� �
= N

n

� �
is the probability of selecting ith network in the sample s and y�i ¼P

j2AðiÞyj is the sum of all y values present in ith unit’s network. Assuming there are K number 
of distinct networks in the population U, k � K refers to the number of distinct networks in the 
initial sample s:

An unbiased variance estimator of tHT is

v tHTð Þ ¼
Xk

i¼1

Xk

j¼1

aij − aiaj

aijaiaj

� �

y�i y�j ; (2) 

where aij ¼ 1 − N−mi
n

� �
þ

N−mj
n

� �

− N−mi−mj
n

� �

= N
n

� �n o

is the probability of selecting ith and jth 
networks in the sample s, drawn by simple random sampling without replacement (SRSWOR).

Following Chaudhuri (2000)’s modifications for varying probability sampling design, the 
Horvitz and Thompson (1952) type unbiased estimator of sY is
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tHT:C ¼
Xn

i¼1

ti

pi
; (3) 

where pi is the first order inclusion probability of ith unit in the sample s and ti ¼
1

mi

P
j2AðiÞyj: It 

is also observed that 
PN

i¼1yi ¼
PN

i¼1ti:

An unbiased variance estimator of tHT:C is

v tHT:Cð Þ ¼
Xn

i¼1

Xn

j¼1

pipj − pij

pij

� � ti

pi
−

tj

pj

!2

;

0

@ (4) 

where pij is the second order inclusion probability of ith and jth units in the sample s:

3. Proposed Kalman filtering application in Thompson’s adaptive sampling

Let UðtÞ ¼ ð1, 2, :::, NðtÞÞ be the finite population at the time-point t ¼ 0, 1, 2, :::, T and y tð Þ ¼
ðy1 tð Þ, y2 tð Þ, :::, yN tð Þ tð ÞÞ be the study variable bearing rare and clustered characteristics. The aim 

is to find an improved estimate of sY tð Þ ¼
PN tð Þ

i¼1 yi tð Þ at time t, utilizing the past data with 
Kalman Filtering (KF) technique.

Kalman (1960) introduced a recursive algorithm i.e. KF algorithm which is associated with lin-
ear filtering based on the least square method. Later, Meinhold and Singpurwalla (1983) devel-
oped the KF technique for statisticians and it is quite easy to understand. Therefore, the 
computational procedure requires an Observation equation and a System equation. The 
Observation equation describes the linear relationship between the unobserved quantity and the 
observed quantity for each time point t: The equation has the structure of a linear regression 
model. The System equation defines the evolution of the unobservable quantity from the time 
point t − 1 to t. Thus, the computational algorithm is mainly based on the recursions, in which 
the value at the time point t may be calculated from the earlier values for t − 1, t − 2, ::::, 1: It is 
noteworthy that the System equation should be linear. However, the Extended Kalman Filtering 
and Unscented Kalman Filtering (Julier and Uhlmann (1997), Durbin and Koopman (2012)) are 
designed for the non-linear System equation also. But throughout this study, we concentrate on 
the linear System equation.

Therefore, to define an Observation equation and a System equation, a suitable model assump-
tion is required. Cassel, Sarndal, and Wretman (1976) and S€arndal, Swensson, and Wretman 
(1992) in their monographs introduced the generalized regression (greg) estimator, postulating a 
model to describe the relationship between the variable of interest y and an auxiliary variable x:
Let x tð Þ ¼ ðx1 tð Þ, x2 tð Þ, :::, xN tð Þ tð ÞÞ be the known positive valued auxiliary variable, for the time 
point t:

Now, as described in Sec. 2, an initial sample sðtÞ of size nðtÞ is drawn at time t and to capture 
more rare units, Thompson’s Adaptive Sampling steps are followed for each time point t:
Defining Aði; tÞ as the network of ith unit in the initial sample at the time point t, y�i ðtÞ ¼P

j2Aði;tÞyjðtÞ and x�i ðtÞ ¼
P

j2Aði;tÞxjðtÞ represent the sum of the y and x values of the units which 
are in the same network.

To define the Greg estimator of Thompson (1990)’s Adaptive Sampling, let a model be postu-
lated as

y�i tð Þ ¼ b tð Þx�i tð Þ þ ei tð Þ

where eiðtÞ0s are assumed to be independent and identically distributed with mean 0 and vari-
ance r2ðtÞ:
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Then, the Greg estimator of sYðtÞ can be written as

tgreg tð Þ ¼
Xk tð Þ

i¼1

y�i tð Þ
ai tð Þ

þ X tð Þ −
Xk tð Þ

i¼1

x�i tð Þ
ai tð Þ

0

@

1

Ab̂ tð Þ; (5) 

where kðtÞ is the number of distinct networks in the sample sðtÞ at the time point t, 

X tð Þ ¼
P

i2UðtÞx�i ðtÞ, b̂ tð Þ ¼
PkðtÞ

i¼1
y�i tð Þx�i tð ÞwiðtÞ

PkðtÞ

i¼1
x�2i tð ÞwiðtÞ

is the regression coefficient and wi tð Þ ¼ 1−aiðtÞ
ai tð Þx�i ðtÞ

.

The above equation can be rewritten as

tgreg tð Þ ¼
Xk tð Þ

i¼1

y�i tð Þ
ai tð Þ

1þ X tð Þ −
Xk tð Þ

i¼1

x�i tð Þ
ai tð Þ

8
<

:

9
=

;

x�i tð Þwi tð Þai tð Þ
Xk

i¼1
x�2i tð Þwi tð Þ

2

6
6
6
4

3

7
7
7
5

¼
Xk tð Þ

i¼1

y�i tð Þ
ai tð Þ

gi tð Þ; (6) 

where gi tð Þ ¼ 1þ X tð Þ −
PkðtÞ

i¼1
x�i tð Þ
ai tð Þ

n o
x�i tð Þwi tð Þai tð Þ
PkðtÞ

i¼1
x�2i tð Þwi tð Þ

:

Let eiðtÞ ¼ y�i ðtÞ − b̂ðtÞx�i ðtÞ and FiðtÞ ¼ giðtÞeiðtÞ: Then, an unbiased variance estimator of 
tgreg tð Þ is

vgreg tð Þ ¼
Xk tð Þ

i¼1

Xk tð Þ

j¼1

aij tð Þ
ai tð Þaj tð Þ

− 1

 !
Fi tð ÞFj tð Þ

aij tð Þ
; (7) 

and the variance of b̂ðtÞ is given by

V b̂ tð Þ
� �

¼ VpEm b̂ tð Þ
� �

þ EpVm b̂ tð Þ
� �

¼ r2 tð ÞEp

Xk tð Þ

i¼1
x�2i tð Þw2

i tð Þ

Xk tð Þ

i¼1
x�2i tð Þwi tð Þ

0

@

1

A

2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; (8) 

where Ep, Em be the design-based, model-based expectation and Vp, Vm be the same for the 
variance.

However, in the above expression, r2ðtÞ is unknown. Thus, it can be estimated by an unbiased 
estimator 1

nðtÞ−1
PkðtÞ

i¼1e2
i ðtÞ:

Therefore, an estimator of Vðb̂ðtÞÞ may be taken as

A� tð Þ ¼
1

n tð Þ − 1

Xk tð Þ

i¼1
e2

i tð Þ

0

@

1

A

Xk tð Þ

i¼1
x�2i tð Þw2

i tð Þ

Xk tð Þ

i¼1
x�2i tð Þwi tð Þ

0

@

1

A

2

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

(9) 

Now, utilizing vgregðtÞ and A�ðtÞ as model parameters, the estimate tgregðtÞ can be improved. 
This tgregðtÞ also depends on the regression coefficient bðtÞ and a known quantity XðtÞ:

Following Meinhold and Singpurwalla (1983), tgregðtÞ can be updated through bðtÞ, using the 
data on the previous time point.

Therefore, the KF model can be modified as
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Observation equation:

tgreg tð Þ ¼ b tð ÞX tð Þ þ e tð Þ; e tð Þ � N 0, vgreg tð Þ
� �

, t ¼ 1, 2, :::, T (10) 

System equation:

b tð Þ ¼ b t − 1ð Þ þ a tð Þ; a tð Þ � N 0, A� tð ÞÞ; assuming e tð Þ, a tð Þare independent:
�

(11) 

In Eq. (10), it shows the linear relationship between the Greg estimator tgregðtÞ and the regres-
sion coefficient bðtÞ: The evolution of bðtÞ is defined by the System equation (Eq. (11)).

A few notations are needed here for the recursive algorithm. Let tgregðtÞ ¼ ð
�

tgreg
�

ðt − 1Þ, 

tgregðtÞÞ; t ¼ 2, 3, ::::, T and PðbðtÞjtgreg tð Þ
�

Þ be a posterior distribution.

Denoting tgregðtÞ as the initial sample-based estimate, the prior distribution of bðtÞ is 
PðbðtÞjtgreg t − 1ð Þ

�

Þ and the likelihood of bðtÞ is PðtgregðtÞjbðtÞ, tgreg t − 1ð Þ
�

Þ:

Therefore, following Meinhold and Singpurwalla (1983), it can be written as

P b tð Þ tgreg tð Þ
�

�
�
�
�

�
/ P tgreg tð Þjb tð Þ, tgreg t − 1ð Þ

�

� �
P b tð Þð

�
�tgreg t − 1ð Þ

�

 !

; (12) 

It is also noteworthy that bðt − 1Þ can be summarized by the posterior distribution 
Pðbðt − 1Þjtgreg t − 1ð Þ

�

Þ which is here assumed to be followed Nðuðt − 1Þ, Rðt − 1ÞÞ; t ¼ 1, 2, :::, T:

The starting value at the time point t ¼ 0 is distributed as,

b tð Þ � N u 0ð Þ, R 0ð Þ
� �

where u 0ð Þ ¼
tgreg 0ð Þ
X 0ð Þ

and R 0ð Þ ¼
vgreg 0ð Þ
X2 0ð Þ

(12.1) 

are the best guesses.
Then, it is found that

b tð Þjtgreg
�

t − 1ð Þ � N u t − 1ð Þ, R tð Þ ¼ R t − 1ð Þ þ A� tð Þ
� �

; (13) 

which is derived from the system equation defined in Eq. (11).
Therefore, to calculate the posterior distribution defined in Eq. (12) it is necessary to deter-

mine the likelihood function of tgregðtÞjbðtÞ, tgregðt − 1Þ
�

: Let DðtÞ be the measurement residual 

which may be written as

D tð Þ ¼ tgreg tð Þ − t�greg tð Þ ¼ tgreg tð Þ − u t − 1ð ÞX tð Þ: (14) 

Thus, from the Eq. (12) and Eq. (14) it is also found that the likelihood function 
tgregðtÞjbðtÞ, tgregðt − 1Þ

�
is equivalent to DðtÞjðtgregðt − 1Þ

�

, bðtÞÞ:

Using the observation equation Eq. (10) in the Eq. (14), it is found that

D tð Þ ¼ b tð ÞX tð Þ þ e tð Þ − u t − 1ð ÞX tð Þ ¼ X tð Þ b tð Þ − u t − 1ð Þ
� �

þ e tð Þ;

which yields EðDðtÞjtgreg t − 1ð Þ
�

, b tð ÞÞ ¼ X tð Þ b tð Þ − u t − 1ð Þ
� �

:Thus,

D tð Þj tgreg t − 1ð Þ
�

, b tð Þ
� �

� N X tð Þ b tð Þ − u t − 1ð Þ
� �

, vgreg tð Þ
� �

: (15) 

Therefore, the posterior distribution bðtÞjtgregðtÞ
�

becomes bðtÞjDðtÞ, tgregðt − 1Þ
�

which can be 
computed using the property of Bivariate Normal distribution: Suppose X1, X2 

follow Bivariate Normal distribution with means l1, l2 and has the covariance matrix R ¼
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�
R11 R12
R21 R22

�

: Then, the conditional distribution is

X1jX2 ¼ x2 � N l1 þ R12R
−1
22 x2 − l2ð Þ, R11 − R12R

−1
22 R21

� �
(16) 

Now, replacing X1, X2, l2 and R22 by D tð Þ, b tð Þ, uðt − 1Þ and R tð Þ ¼ R t − 1ð Þ þ A� tð Þ, respect-
ively in Eq. (16) and then, comparing it with the mean of the distribution of 
DðtÞjbðtÞ, tgregðt − 1Þ

�
(Eq. (15)), the value of l1 and R12 are computed.

Thus, one may get the following equation

l1 þ R12R−1 tð Þ b tð Þ − u t − 1ð Þ
� �

¼ X tð Þ b tð Þ − u t − 1ð Þ
� �

;

which leads to the solutions

l1 ¼ 0 and R12 ¼ X tð ÞR tð Þ: (17) 

Similarly, comparing variances, it can be easily seen that R11 ¼ vgregðtÞ þ X2ðtÞRðtÞ:
Then, the joint distribution of bðtÞ and DðtÞ, given tgregðt − 1Þ

�

is

b tð Þ
D tð Þ

� �

jtgreg t − 1ð Þ
�

� N u t − 1ð Þ

0

� �

,
R tð Þ X tð ÞR tð Þ

X tð ÞR tð Þ vgreg tð Þ þ X2 tð ÞR tð Þ

 ! !

(18) 

Thus, the posterior distribution becomes,

b tð Þjtgreg tð Þ
�

� N u t − 1ð Þ þ
R tð ÞX tð Þ

X2 tð ÞR tð Þ þ vgreg tð Þ
D tð Þ, R tð Þ −

R2 tð ÞX2 tð Þ
X2 tð ÞR tð Þ þ vgreg tð Þ

 !

(19) 

Now, at time point t, the posterior distribution for bðtÞ has the mean and variance

u tð Þ ¼ u t − 1ð Þ þ
R tð ÞX tð Þ

X2 tð ÞR tð Þ þ vgreg tð Þ
D tð Þ (19.1) 

and

R tð Þ ¼ R tð Þ −
R2 tð ÞX2 tð Þ

X2 tð ÞR tð Þ þ vgreg tð Þ
, respectively: (19.2) 

The term R tð ÞX tð Þ
X2 tð ÞR tð Þþvgreg tð Þ is called ‘Kalman Gain’. This Kalman gain is used to update the model.

Therefore, the updated regression coefficient is 

b̂KF tð Þ ¼ u t − 1ð Þ þ
R tð ÞX tð Þ

X2 tð ÞR tð Þ þ vgreg tð Þ
D tð Þ ¼ u tð Þ; t ¼ 1, 2, :::, T: (20) 

and the updated Greg estimator at time point t is

tKF
greg tð Þ ¼ b̂KF tð ÞX tð Þ; (21) 

which has the measurement error

R tð ÞX2 tð Þ; (22) 

where R tð Þ ¼ R tð Þ − R2 tð ÞX2 tð Þ
X2 tð ÞR tð Þþvgreg tð Þ :

4. Extension of the proposed method for varying probabilities sampling design

Chaudhuri (2000) demonstrated necessary modifications of Adaptive Sampling design where an 
initial sample s of size n is chosen by any varying probabilities sampling designs instead of SRS. 
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This procedure and the estimation procedure are described in Sec. 2. In Sec. 2, Eq. (3) and Eq. 
(4) define the unbiased estimator of sY and unbiased variance estimator, respectively.

In order to perform the recursive algorithm of Meinhold and Singpurwalla (1983) with 
Chaudhuri’s adaptive sampling design, a model consideration is required for deriving the Greg 
estimator at the time-point t:

Let a model be postulated as

ti tð Þ ¼ b� tð Þli tð Þ þ ei tð Þ; t ¼ 1, 2, :, T 

where, tiðtÞ ¼ 1
miðtÞ

P
j2Aði;tÞyjðtÞ, liðtÞ ¼ 1

miðtÞ
P

j2Aði;tÞxjðtÞ, LðtÞ ¼
P

i2UðtÞliðtÞ and as before, eiðtÞ
are assumed to be independently and identically distributed with mean 0 and vari-
ance r2 tð Þ ðunknownÞ:

Hence, the Greg estimator of sYðtÞ ¼
PNðtÞ

i¼1 yiðtÞ is

tgreg:C tð Þ ¼
Xn tð Þ

i¼1

ti tð Þ
pi tð Þ

1þ L tð Þ −
Xn tð Þ

i¼1

li tð Þ
pi tð Þ

8
<

:

9
=

;

li tð Þw0i tð Þpi tð Þ
Xn

i¼1
l2
i tð Þw0i tð Þ

2

6
6
6
4

3

7
7
7
5

¼
Xn tð Þ

i¼1

ti tð Þ
pi tð Þ

g0i tð Þ; (23) 

where g0iðtÞ ¼ 1þ LðtÞ −
PnðtÞ

i¼1
liðtÞ
piðtÞ

n o
liðtÞw0iðtÞpiðtÞPn

i¼1
l2i ðtÞw

0
iðtÞ

and w0i tð Þ ¼ 1−pi tð Þ
pi tð Þli tð Þ :

Therefore, the unbiased variance estimator of tgreg:CðtÞ is

vgreg:C tð Þ ¼
X

i<j2s tð Þ

X pi tð Þpj tð Þ − pij tð Þ
pij tð Þ

 !
F0i tð Þ
pi

−
F0j tð Þ
pj

!2

;

0

@ (24) 

where e0iðtÞ ¼ tiðtÞ − bb�ðtÞliðtÞ, F0iðtÞ ¼ g0i tð Þe0i tð Þ and bb�ðtÞ ¼
PnðtÞ

i¼1
tiðtÞliðtÞw0iðtÞPnðtÞ

i¼1
l2i ðtÞw

0
iðtÞ

:

Thus, the KF model can be defined as
The observation equation:

tgreg:c tð Þ ¼ b� tð ÞL tð Þ þ e� tð Þ; e� tð Þ � N 0, vgreg:C tð Þ
� �

, t ¼ 1, 2, :::, T (25) 

and the system equation: 

b� tð Þ ¼ b� t − 1ð Þ þ a� tð Þ; a� tð Þ � N 0, A�� tð ÞÞ:
�

(26) 

Here, A�� tð Þ ¼ ð 1
n tð Þ−1

PnðtÞ
i¼1 e02i ðtÞÞ

PnðtÞ

i¼1
l2i tð Þw02i ðtÞ

ð
PnðtÞ

i¼1
l2i tð Þw0iðtÞÞ

2 
is an estimator of Vð bb�ðtÞÞ: It is also assumed 

that e�ðtÞ and a� tð Þ are independent.
Using Eqs. (12)–(19), it is found that the predicted regression coefficient is

b̂KF:C tð Þ ¼ u� t − 1ð Þ þ
R� tð ÞL tð Þ

L2 tð ÞR� tð Þ þ vgreg:C tð Þ
D� tð Þ ¼ u� tð Þ; t ¼ 1, 2, :::, T: (27) 

For convenience, the recursive steps are written as follows,

R� tð Þ ¼ R� t − 1ð Þ þ A�� tð Þ; t ¼ 1, 2, :::, T (28) 

R� tð Þ ¼ R� tð Þ −
R�2 tð ÞL2 tð Þ

L2 tð ÞR� tð Þ þ vgreg:C tð Þ
; t ¼ 1, 2, :::, T (29) 

t�greg:C tð Þ ¼ L tð Þu� t − 1ð Þ; t ¼ 1, 2, :::, T (30) 

D� tð Þ ¼ tgreg:C tð Þ − t�greg:C tð Þ; t ¼ 1, 2, :::, T (31) 
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u� tð Þ ¼ u� t − 1ð Þ þ
R� tð ÞL tð Þ

L2 tð ÞR� tð Þ þ vgreg:C tð Þ
D� tð Þ; t ¼ 1, 2, :::, T (32) 

The initial value at the time point t ¼ 0 for b�ðtÞ is assumed to be distributed as 
Nðu�ð0Þ, R�ð0ÞÞ where u�ð0Þ ¼ tgreg:Cð0Þ

Lð0Þ and R�ð0Þ ¼ vgreg:Cð0Þ
L2ð0Þ :

Therefore, the updated predictor of tgreg:CðtÞ is

tKF
greg:C tð Þ ¼ b̂KF:C tð ÞL tð Þ (33) 

and the measurement error can be calculated by

R tð ÞL2 tð Þ: (34) 

5. Simulation study

The simulation study uses district-wise data on the information of oilseeds production published 
by Ministry of Agriculture and Farmers Welfare, Department of Farmer Welfare and Directorate 
of Economics and Statistics to demonstrate the efficacy of the proposed method. The data pro-
vides information on oilseeds production areas in 236 districts of the ten states (Arunachal 
Pradesh, Uttarakhand, Nagaland, Jammu & Kashmir, Himachal Pradesh, Punjab, Uttar Pradesh, 
Bihar, Sikkim, and Assam) in India. The purpose of this study is to estimate the total/average 
area of oilseeds production in 2014. However, out of these 236 districts, there are 30 or more dis-
tricts that produce oilseeds. Thus, the “area of oilseeds production” may be taken as a rare unit 
and the Adaptive Sampling design may be considered in this study. The estimation procedure, 
utilizing the KF technique more precisely predicts the total or average area of the oilseeds pro-
duction in 2014, using the data of the past two years (2012 & 2013).

Therefore, considering the “area of oilseeds production” as a rare variable and “districts” as 
population units, the Adaptive Sampling technique is performed at the beginning. For this, an 
initial sample (a few districts) is selected and the values of the above mentioned variable are 
observed. If any of the districts produces oilseeds, its neighboring districts are also observed for 
further detection of a district which produces oilseeds. As a result, networks are formed and an 
estimator is defined for this sampling strategy. Here, the “number of agricultural laborers” is 
taken as an auxiliary variable from census 2011 data to employ the Greg estimator. Two distinct 
networks are observed in the population. The term “network” is defined in Sec. 3. Network sizes 
are different for each year. For instance, network sizes were 16 and 10 for the year 2012. For the 
year 2013, it was 17 and 8. In 2014, the network sizes are 28 and 7. Here, to study the competi-
tiveness and effectiveness of the proposed model, it is assumed that the population total is 
known. The total areas (in Hectare) under the oilseeds crops are 33,563 (mean ¼ 142.2161), 
33,669 (mean¼ 142.6653) and 102,858 (mean¼ 435.839) in the year 2012, 2013 and 2014 respect-
ively. In 2014, the number of districts as well as the total or average area, under the oilseeds crops 
is a bit larger than the previous years. In this paper, we concentrate on the estimation of average 
oilseed production rather than total production.

The simulation study is performed here selecting different sets of initial samples size. In 
Table 2 and Table 3, the initial samples sizes for the years 2012, 2013, and 2014 are shown as 
(67,77,87) or (58,60,74) or (63,65,78). Table 2 shows the performance report for the proposed 
method employing Thompson’s approach where the initial samples are drawn by SRSWOR. 
The Greg estimate and its mean square error (MSE) estimate have been calculated for each 
year. These values are considered as initial estimates of the Kalman Filter’s parameters. It is a 
recursive procedure of updating the existing estimator after adding the information gathered 
from the previous years. Therefore, it should have initial values which is stated in Eq. (12.1) 
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of Sec. 3. In this study, the year 2012 is the initial time point i.e. t ¼ 0: Thus, u 0ð Þ ¼
tgreg 0ð Þ

X 0ð Þ ¼
Greg estimate for year 2012

Xð0Þ and R 0ð Þ ¼ vgreg 0ð Þ
X2 0ð Þ ¼

MSE of greg estimator for year 2012
X2 0ð Þ are the initial 

values. The recursive algorithm steps referred to the Sec. 3 are followed to update the esti-
mated value. For ease of understanding, the recursive steps are also provided in Table 1
shortly before this section.

Performances of the algorithms are tabulated in the following table with four basic criteria - 
Average Coefficient of Variation (ACV), Average Coverage Probability (ACP), Absolute Relative 
Bias (ARB), Pseudo mean square error (PMSE). For this, 10,000 replications of samples are taken. 
ACV is the average of “B” times replicated coefficient of variance (CV), which is formulated by 

1
B
P Square root of estimated MSE

Estimate � 100: 95% confidence interval (CI) is computed for “B” replicates 
and whether the CI covers the known value of the parameter or not is also noted. The percentage 
number of times the CI’s cover the known value is called ACP. The closer it is to 95% the better. 
To calculate ARB, the absolute deviation of the estimate from the known value is taken relative 
to the known value for each replicate, and the average is considered. PMSE is the average square 
deviation of the estimator from the original. Generally, ACV less than 10% is an excellent estima-
tor and at most 30% is acceptable. The smaller ARB indicates greater effectiveness. A similar con-
clusion can be drawn for PMSE.

Table 3 also shows the performance report for Kalman filtering employing Chaudhuri’s Adaptive 
Sampling design. According to this approach, the surveyor draws the initial sample with a varying 
probability sampling design. Lahiri (1951)–Midzuno (1951)–Sen (1953)’s sampling design has been 
used here for this purpose which required a size measure variable. In this study, the “number of 
cultivators” is considered as a size measure variable that is taken from census 2011 data.

From Table 2, average of 10,000 times replicated greg estimates ðtgreg tð ÞÞ with sample sizes 67, 
77 and 87 are 139.13, 134.52 and 494.86 for the years 2012, 2013 and 2014, and the 

Table 1. Computation steps to evaluate the proposed estimators.

Kalman Filter with Thompson’s Adaptive Sampling Kalman Filter with Chaudhuri’s Adaptive Sampling

Target to evaluate tKF
greg tð Þ ðEq:21Þ Target to evaluate tKF

greg:C tð Þ ðEq:33Þ
Previous Estimators 

for time 
points 0,1, … T

tgreg tð Þ, vgreg tð Þ
8 t ¼ 0, 1, :::T ðEqs: 6 − 7Þ

Previous 
Estimators for 
time 
points 0, 1, :T

tgreg:C tð Þ, vgreg:C tð Þ
8 t ¼ 0, 1, :::T ðEqs:23 − 24Þ

Computation Steps 1. Compute A� tð Þ ðEq:9Þ
8 t ¼ 0, 1, :::T

Computation 
Steps

1. Compute A�� tð Þ
8 t ¼ 0, 1, :::T

2. Initial values at t ¼ 0,  

uð0Þ ¼
tgregð0Þ

Xð0Þ

Rð0Þ ¼
vgregð0Þ

X2ð0Þ
ðEq:12aÞ

2. Initial values at t ¼ 0,  

u� 0ð Þ ¼
tgreg:C 0ð Þ

L 0ð Þ

R�ð0Þ ¼
vgreg:Cð0Þ

L2ð0Þ

3.  R tð Þ ¼ R t − 1ð Þ þ A� tð Þ 8 t ¼ 1, 2, ::T 3.  R� tð Þ 8 t ¼ 1, 2, ::T Eq:28ð Þ

4.  R tð Þ 8 t ¼ 1, 2:::T ðEq:19:2Þ 4.  R� tð Þ 8 t ¼ 1, 2, ::T Eq:29ð Þ

5.  t�greg tð Þ ¼ u t − 1ð ÞX tð Þ,  

D tð Þ, u tð Þ, 8 t ¼ 1, 2:::T  

ðEqs: 14, 19:1Þ

5.  t�greg:C tð Þ, D� tð Þ, u� tð Þ

8 t ¼ 1, 2:::T ðEqs: 30 − 32Þ

6.  b̂KF tð Þ
8 t ¼ 1, 2:::T ðEq:20Þ

6.  b̂KF:C tð Þ
8 t ¼ 1, 2:::T ðEq: 27Þ

7. Updated estimator at t ¼ 1, 2:::T  

tKF
greg tð Þ

8 t ¼ 1, 2:::T ðEq:21Þ

7. Updated estimator at t ¼ 1, 2:::T  

tKF
greg:C tð Þ

8 t ¼ 1, 2:::T ðEq: 33Þ
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corresponding average MSEs ðvgreg tð ÞÞ are 419.43, 463.98 and 3329.88. The Greg estimate and its 
MSE (for each replication) are used as past information to update the estimate (for each replica-
tion) of population total for 2014. Thus, we get the updated average estimate of population mean 
as 446.58 using KF technique for 2014. To get KF estimate for 2014, we start with 
tgreg 2012ð Þ, vgreg 2012ð Þ as an estimate and its variance estimate respectively.Therefore, the initial 
values of the parameters ðu 0ð Þ, Rð0ÞÞ of the proposed KF estimator are ðtgreg 2012ð Þ

X 2012ð Þ
, vgreg 2012ð Þ

X2 2012ð Þ
Þ: Here 

X 2012ð Þ ¼ 21888998 and ðtgreg 2012ð Þ, vgreg 2012ð ÞÞ values are different for each replications. 
Thus, it remains blank in that table in place of “Proposed estimator of KF”. The information for 
the year 2012 first updates the estimate for the year 2013 with the help of KF technique described 
in Sec. 3, and then for the year 2014. ACV and ACP values are also mentioned here for Greg 
estimator and for the proposed KF estimator. The later one provide better coverage than the 
Greg estimator. KF estimator also provide lower ACV and ARB than the Greg estimator. Here 
we also get apparently same conclusion for other two sets of sample sizes.

In Table 3, we consider same sets of sample sizes. We reach to the same conclusion as above 
based on ACP, ACV and ARB values. To update the estimate of population mean for the year 
2014, we have taken the information of the year 2012 i.e. ðtgreg:C 2012ð Þ, vgreg:C 2012ð ÞÞ and the ini-
tial values of the parameters ðu� 0ð Þ, R�ð0ÞÞ proposed KF estimator are ðtgreg:C 2012ð Þ

L 2012ð Þ
, vgreg:C 2012ð Þ

L2 2012ð Þ
Þ

and L 2012ð Þ ¼ 24328982:

6. Concluding remarks

There are large numbers of probabilistic sampling techniques that can be used to draw a sample 
from the target population. While dealing with the rare and clustered characteristics of a popula-
tion, Adaptive Sampling is the best choice to provide a reliable estimate. This study further 

Table 2. Generalized regression model vs. Kalman Filtering model (Thompson’s approach).

Estimators
Performances based 
on 10,000 replications

Initial samples sizes for the years (2012,2013, 2014)

(67,77,87) (58,60,74) (63,65,78)

Using GREG Average estimates (139.13,134.52,494.86) (144.28,147.53,431.86) (145.92,146.19,443.06)
Average MSE (419.43,463.98,3329.88) (438.73,527.66,3397.05) (401..31,512.53,3390.32)
ACV (%) (14.20, 16.49, 11.49) (14.00,16.38, 12.76) (13.87, 16.45, 12.25)
ACP (84.48, 87.04, 74.89) (85.06, 89.75, 79.56) (85.93, 87.63, 78.95)
ARB (0.022,0.057,0.135) (0.015,0.034,0.009) (0.026,0.025,0.017)

Proposed estimator 
using KF

Average estimates (–, 143.07,446.58) (–,145.48, 432.02) (–, 143.09, 434.92)
ACV(%) (–, 15.51, 10.68) (–, 15.43, 10.06) (–, 15.52, 11.39)
ACP (–, 92.83, 85.13) (–, 93.74, 89.58) (–, 92.81, 89.21)
ARB (–, 0.003,0.024) (–, 0.019, 0.008) (–, 0.003, 0.004)
PMSE (–, 1054.47, 9672.93) (–, 1089.66, 5986.66) (–, 1077.44, 7665.31)

Here Population mean ð2014Þ ¼ 435:839:

Table 3. Generalized regression model vs. Kalman Filtering model (Chaudhuri’s approach).

Estimators
Performances based 
on 10,000 replications

Initial samples sizes for the years (2012,2013, 2014)

(67,77,87) (58,60,74) (63,65,78)

Using GREG Average estimates (124.25,122.58,445.63) (159.65,157.64,406.48) (131.25,126.61,488.63)
Average MSE (377.79,462.93,2955.58) (455.40,559.72,2750.10) (392.32,475.21,3189.24)
ACV (%) (15.48, 17.57, 12.18) (13.18,14.90, 12.87) (14.92, 17.15, 11.54)
ACP (89.31, 89.04, 75.80) (90.37, 89.75, 73.56) (89.21, 88.69, 75.06)
ARB (0.126,0.148,0.022) (0.122,0.105,0.067) (0.077,0.113,0.121)

Proposed estimator 
using KF

Average Estimates (–, 141.33,436.58) (–,143.22, 432.02) (–, 141.43, 437.92)
ACV (%) (–, 15.54, 11.39) (–, 14.22, 11.29) (–, 15.86, 10.97)
ACP (–, 91.35, 85.17) (–, 92.77, 84.54) (–, 91.16, 85.06)
ARB (–, 0.009,0.002) (–, 0.004, 0.009) (–, 0.009, 0.005)
PMSE (–, 1051.45, 9113.07) (–, 1059.66, 7876.59) (–, 1007.38, 10885.31)

Here Population mean ð2014Þ ¼ 435:839:
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highlights the importance of periodic surveys of such populations to ensure their long-term exist-
ence. Here, a model-assisted estimator- Greg estimator is used for primary estimation. Also, the 
effects of regression coefficient and the auxiliary information on the estimation of the population 
total are observed and these effects are further considered for accuracy, utilizing the Kalman 
Filtering technique.

Therefore, the Kalman Filtering technique is applied here with the adaptive sampling. From 
simulation study, it is observed that proposed estimators improves the primarily suggested esti-
mates, using past data and produced small absolute relative bias (ARB). This approach can track 
the rapidly changing process parameters. In this case, the regression coefficient is only the process 
parameter. As a result, survey practitioners may be interested in this proposed approach when 
dealing with rare and clustered characteristics.
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