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Modifications on re-scaling bootstrap for adaptive sampling

Sanghamitra Pal and Dipika Patra

Department of Statistics, West Bengal State University, Kolkata, West Bengal, India

ABSTRACT
In complex survey design, the resampling method is often used for assess-
ing the variability and confidence interval of non-linear estimators which is
a function of several estimated means or totals. A well-known resampling
method, called the re-scaling bootstrap technique was originated by Rao
and Wu (1988). This article is an attempt to propose a re-scaling bootstrap
technique in estimating the parameters of rare and clustered population
for a complex survey design. Adaptive cluster sampling design is a prob-
abilistic approach to reach out to the rare and clustered units. Thompson
(1990) introduced this design. Chaudhuri (2000) extended this design for
varying probability sampling. In practice, the final sample size of adaptive
sampling may be exorbitantly large. From this realistic point of view,
Chaudhuri, Bose, and Dihidar (2005) developed the size-constrained adap-
tive sampling design, in varying probability sampling. We first describe
here, how this well-known re-scaling bootstrap technique may be
employed for non-linear estimators of the population total, in the case of
rare and clustered population. It has been found that there is a need to
develop an alternative re-scaling bootstrap procedure to avoid complica-
tions in computation to cover Chaudhuri, Bose, and Dihidar (2005). A simu-
lation study has been carried out to demonstrate the proposed methods.
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1. Introduction

Thompson (1990)’s adaptive cluster sampling design considers the initial sample selected by sim-
ple random sampling. Later, Chaudhuri (2000) extended this for the varying probability schemes
referring as adaptive sampling. The greatest drawback of the adaptive sampling design is that the
final sample size may be exorbitantly large in real-life applications. Thompson (1994), Brown
(1994), Brown and Manly (1998), Salehi and Seber (1997, 2002), Chaudhuri, Bose, and Ghosh
(2004), Chaudhuri, Bose, and Dihidar 2005), and many others suggested alternative way-outs to
overcome this drawback. Recently Pal and Patra (2021) developed a prediction approach in adap-
tive sampling design. In Sec. 2, we briefly review the adaptive sampling design under varying
probability schemes.

Chao (2004), Dryver and Chao (2007) suggested ratio estimators under Thompson (1990)’s
adaptive cluster sampling design. Variance estimation and confidence interval estimation for such
nonlinear estimators are often a complicated task. Rao and Wu (1988)’s re-scaling bootstrap tech-
nique works well in estimating the variance of a non-linear statistic for varying probability sam-
pling designs. In this technique, bootstrap resamples are taken from the original sample already
at hand and these resampled values are usually re-scaled in such a way that the bootstrap expect-
ation and variance are equal to the original sample-based estimate and its unbiased variance
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estimate, in the linear case. Later, modifications on re-scaling bootstrap are recommended in Pal
(2009) for non-fixed size design.

Christman and Pontius (2000) investigated the performance of several non-parametric boot-
strap methods including Rao and Wu (1988)’s re-scaling bootstrap with Hansen and Hurwitz
(1943) estimator under Thompson (1990)’s adaptive cluster sampling. Perez and Pontius (2006)
also developed several methods with the Horvitz and Thompson (1952) method of estimation.
Their prescribed estimators are biased with extremely low coverage rates. We refer to
Mohammadi, Salehi, and Rao (2014) for a detailed study of these shortcomings. Recently Biswas,
Rai, and Ahmad (2020) discussed the application of re-scaling bootstrap in rank set sampling.

This article aims to develop a suitable re-scaling bootstrap technique for Chaudhuri (2000)’s
general adaptive sampling design and also for Chaudhuri, Bose, and Dihidar (2005)’s size-con-
strained adaptive sampling design for varying probability sampling. Section 3 is designed for the
implementation and necessary modifications on Rao and Wu (1988)’s re-scaling bootstrap
method in general adaptive sampling and size-constrained adaptive sampling for varying prob-
ability designs considering Horvitz and Thompson (1952) and Rao, Hartley, and Cochran (1962)
methods of estimation, respectively. Sections 3.1.1 and 3.2.1 are considered for the Horvitz and
Thompson (1952) method of estimation. For, Rao, Hartley, and Cochran (1962) method of esti-
mation, Secs. 3.1.2 and 3.2.2 are considered. Since computation plays a key role in bootstrap, the
objective of this current study is to design a suitable algorithm that could avoid complications in
computation and also provide satisfactory results. An alternative re-scaling bootstrap technique
for size-constrained adaptive sampling is proposed in Sec. 4, for both estimation methods. A
simulation study is performed for the variance estimation of a non-linear estimator of the popula-
tion total, and the performance reports are shown in Sec. 5. The bootstrap confidence intervals
are computed by percentile method, and also with the method, assuming normality. The data
obtained from https://dolr.gov.in/district-and-category-wise-wastelands-year-2000 has been used
for the simulation study to compare proposed methods of rescaling bootstrap procedures.

2. Adaptive sampling design

Consider a finite population U ¼ f1, 2, :::,Ng of size N and y ¼ ðy1, y2, :::, yNÞ be a study variable

with rarity characteristics. The problem is to estimate the population total, ¼PN
i¼1 yi. Adaptive

sampling design is applicable for surveying such a rare and clustered population. According to
the pioneering work of Thompson (1990), an initial sample of size n is drawn by simple random
sampling and the sampled units are observed. If any of them meets the predefined criterion of
rarity says, yi > c, its neighboring units are searched for the further detection of a rarity for the
unit i ði ¼ 1, 2, :nÞ: Those neighboring units meeting the rarity condition are included in the
sample. The adding process is continued until we get a boundary with edge units. The neighbor-
hood should be well-defined. Those adjacent units which do not meet the criterion of rarity, are
called edge units. A network AðiÞ with mi number of units is found for ith sampled unit ði ¼
1, 2, :::nÞ: Note that, if ith unit in the initial sample is not rare, its network AðiÞ consists of that
unit, only.

2.1. General adaptive sampling for varying probability designs

Chaudhuri (2000) extended the above procedure of adaptive sampling where the initial sample is
drawn by varying probability designs, using a suitable size measure variable. Following
Chaudhuri (2000) and using Horvitz and Thompson (1952) method of estimation, an unbiased
estimator of the population total Y ¼PN

i¼1 yi is given by
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tHT ¼
X
i2s

ti
pi
;

where ti ¼ 1
mi

P
j2A ið Þ yj, the average value of the study variable belonging to ith unit’s network

A ið Þ and pi be the first order inclusion probability of ith unit.
The fact T ¼Pi2U ti ¼

P
i2U yi ¼ Y , has been used for unbiased estimation of adaptive sam-

pling design.
An unbiased variance estimator of tHT , is formulated as follows:

v tHTð Þ ¼
X
i<j2s

X pipj � pijð Þ
pij

ti
pi

� tj
pj

� �2

;

where pij be the second-order inclusion probability of ith and jth units in the sample.
Chaudhuri, Bose, and Ghosh (2004) considered the Rao, Hartley, and Cochran (1962) method

of sampling strategy and the estimation procedure in general adaptive sampling.
To choose an initial sample of size n using Rao, Hartley, and Cochran (1962) scheme, the

population U of size N is divided at random into n groups, namely G1,G2, :::,Gn with sizes
N1,N2, :::,Nn, respectively, such that

Pn
i¼1 Ni ¼ N: Then, one unit is drawn from each of the n

groups with probability pkjP
j2Gk

pkj
i.e., pk

Qk
: Here pkj is the probability of selecting one unit jth

� �
from kth group and Qk ¼

P
j2Gk

pkj , k ¼ 1, 2, :::, n: The adaptive sampling procedure is applied

to the initial sample of size n in rare and clustered population.
Hence, an unbiased estimator of the population total in general adaptive sampling design for

the Rao, Hartley, and Cochran (1962) method of estimation may be written as,

tRHC ¼
Xn
i¼1

ti
pi=Qi

with an unbiased variance estimator as,

v tRHCð Þ ¼
Pn

i¼1N
2
i � N

N2 �Pn
i¼1N

2
i

Xn
i¼1

Qi
ti
pi
� tRHC

� �2
 !

:

2.2. Size-constrained adaptive sampling for varying probability designs

A major disadvantage of adaptive sampling is that the network size may be unmanageably large.
Such a population demands spare time and cost. Chaudhuri, Bose, and Dihidar (2005) exhibited
a notable way out for varying probability design, called size-constrained adaptive sampling. In this
design, a subset B ið Þ is drawn from A ið Þ by simple random sampling without replacement
(SRSWOR) for ith unit in the sample, subject to the condition

P
i2s li � L; li is the cardinality of

the subset B ið Þ and L be the pre-fixed integer value. Then, following Horvitz and Thompson
(1952), an unbiased estimator of Y can be written as,

t�HT ¼
X
i2s

ei
pi

(2.1)

writing ei ¼ 1
li

P
j2B ið Þyj as the average y values of the subsampled units of ith unit’s network.

The related unbiased estimator of variance is given by

v t�HTð Þ ¼Pi2s
vR eið Þ
pi

þPi<j2s
P pipj�pij

pij

� �
ei
pi
� ej

pj

� �2
;

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 3



vR eið Þ ¼ 1
li
� 1
mi

� �
1

li � 1

� � X
j2B ið Þ

yj � ejð Þ2 (2.2)

Similarly, if the Rao, Hartley, and Cochran (1962) method of estimation is performed, an
unbiased estimator of the population total becomes

t�RHC ¼
Xn
i¼1

ei
pi=Qi

(2.3)

An unbiased variance estimator is

v t�RHC
� � ¼ Pn

i¼1N
2
i � N

N2 �Pn
i¼1N

2
i

Xn
i¼1

Qi
ei
pi
� t�RHC

� �2
 !

þ
Xn
i¼1

1
li
� 1
mi

� �
1

li � 1

� � X
j2B ið Þ

yj � ejð Þ2
( )Qi

pi
:

(2.4)

3. Rao and Wu (1988)’s re-scaling bootstrap technique

Efron (1982) developed bootstrap procedures for an independent and identically distributed (iid)
sample of fixed size design. An important issue comes up in performing the naive bootstrap with
a stratified sampling design. In this design, the ratio of bootstrap variance estimator of the sample
mean to the customary unbiased variance estimator of the sample mean does not converge to 1
in probability unless the stratum sample size is very large. Therefore, the bootstrap variance for
the sample mean becomes an inconsistent estimator which is described in Rao and Wu (1988).
To overcome this issue, Rao and Wu (1988) proposed a re-scaling bootstrap technique.

Let h be the parameter of interest which is a non-linear function of p population means or

totals, say h ¼ f h1, h2, :::, hp
� �

and it is estimated by a non-linear statistic ĥ ¼ f ĥ1, ĥ2, :::, ĥp
� �

which is the same function of p unbiased estimated means or totals. Here, ĥj is a linear estima-

tor of hj: Suppose, yi is the value of the variable of interest for ith unit in the population and the

objective is to estimate the finite population total Y ¼PN
i¼1 yi by a non-linear estimator.

For instance, let us postulate a model, yi ¼ bxi þ �i in which b be an unknown constant and

xi be the value of an auxiliary variable x corresponding to ith unit, assuming known X ¼PN
i¼1 xi:

Here, �i’s are independent with means 0 and variances r2i , i ¼ 1, 2, :N: Then, the generalized
regression (greg) estimator tgreg (Cassel, Sarndal, and Wretman 1976) may be written as

tgreg ¼
X
s

yi
pi

þ X �
X
s

xi
pi

� �P
s yixiwiP
s x

2
i wi

: (3.1)

The usual choices of wi’s are 1
pixi

, 1�pi
pixi

, 1
xi
, 1

x2i
, 1

xgi
0 < g < 2ð Þ, if Horvitz and Thompson

(1952) method of estimation is used.
The estimator tgreg (Eq. (3.1)) is a non-linear function of four ðhere, p ¼ 4Þ unbiased estima-

tors of four population totals. It may be written as,

ĥ ¼ f ĥ1, ĥ2, ĥ3, ĥ4
� �

¼ ĥ1 þ h2 � ĥ2
� � ĥ3

ĥ4
; (3.2)

in which ĥ1 ¼
P

i2s
yi
pi
, ĥ2 ¼

P
i2s

xi
pi
, ĥ3 ¼

P
i2s yixiwi, ĥ4 ¼

P
i2s x

2
i wi are four unbiased esti-

mators of the four population totals say, h1 ¼ Y , h2 ¼ X ¼PN
i¼1 xi, h3 ¼

PN
i¼1 yixiwipi, h4 ¼PN

i¼1 x
2
i wipi, respectively and f h1, h2, h3, h4ð Þ ¼ Y , with the assumption of known X .
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For estimating the variance of ĥ, Rao and Wu (1988)’s re-scaling bootstrap for varying prob-
ability sampling designs may be used here. According to Rao and Wu (1988), a bootstrap sample
is drawn in such a way that the bootstrap-based expectation is equal to their original sample-
based estimate, and the bootstrap variance is equal to the related usual unbiased variance esti-
mate, in the linear case. This procedure is repeated independently, a large number of times, say B
times and found B number of bootstrap estimates for each of the linear estimator. Suppose,

ĥ
�
1b, ĥ

�
2b, ĥ

�
3b, and ĥ

�
4b are bth b ¼ 1, 2, :::, Bð Þ bootstrap estimates derived from the same boot-

strap sample s�bð Þ corresponding to h1, h2, h3, and h4 respectively. Therefore, a bootstrap esti-

mate of Y is taken as f ĥ
�
1, ĥ

�
2, ĥ

�
3, ĥ

�
4

� �
writing, ĥ

�
1 ¼ 1

B

PB
b¼1 ĥ

�
1b, ĥ

�
2 ¼ 1

B

PB
b¼1 ĥ

�
2b,

ĥ
�
3 ¼ 1

B

PB
b¼1 ĥ

�
3b, and ĥ

�
4 ¼ 1

B

PB
b¼1 ĥ

�
4b . For vivid illustration, we refer to the monograph

Chaudhuri (2010, chapter 8), here.
In the next two Secs. 3.1 and 3.2, we briefly describe the re-scaling bootstrap procedure,

employing general adaptive sampling and size-constrained adaptive sampling respectively. Each
sub-section considers the Horvitz and Thompson (1952) and Rao, Hartley, and Cochran (1962)
methods of estimation.

3.1. Proposed re-scaling bootstrap procedure for general adaptive sampling with varying
probability designs

We propose an amendment of the re-scaling bootstrap technique for general adaptive sampling,
of the non-linear estimator }f } (in Eq. (3.2)) in estimating the population total.
Writing ci ¼ 1

mi

P
j2A ið Þ xj, the average of the values of the auxiliary variable x which belong to

the same network A ið Þ, the greg estimator with the Horvitz and Thompson (1952) method of

estimation for Y can be defined using the Eq. (3.2) as, f
P

s
ti
pi
,
P

s
ci
pi
,
P

s ticiw
0
i,
P

s c
2
i w

0
i

� �
: The

usual choices of w0
i’s are

1
pici

, 1�pi
pici

, 1
ci
, 1

c2i
, 1

cgi
; 0 < g < 2ð ).

Similarly, the Rao, Hartley, and Cochran (1962) version of the greg estimator can be written as

f
�
ĥ1ðRHCÞ�, ĥ2ðRHCÞ�, ĥ3ðRHCÞ�, ĥ4ðRHCÞ�

�
¼ ĥ1ðRHCÞ� þ

�
h2 � ĥ2ðRHCÞ�

� ĥ3ðRHCÞ�
ĥ4ðRHCÞ�

: (3.3)

Here, ĥ1 RHCð Þ� ¼
P

s
ti

pi=Qi
, ĥ2 RHCð Þ� ¼

P
s

ci
pi=Qi

, ĥ3 RHCð Þ� ¼
P

s ticiw
00
i and ĥ4 RHCð Þ� ¼

P
s c

2
i w

00
i . The

choices of w00
i ’s are

Qi
pici

, Qi�pi
pici

, 1
ci
, 1

c2i
, 1

cgi
; 0 < g < 2ð Þ:

3.1.1. Proposed re-scaling bootstrap for Horvitz and Thompson (1952) method of estimation
with general adaptive sampling design

For
P

s
ti
pi
, the re-scaling bootstrap procedure may be modified as follows:

Step 1. A set of m ordered pairs say, f ti�
pi�

,
tj�
pj�

� �
; i�, j� 2 s, i� 6¼ j�g are drawn using with replace-

ment procedure from the n n� 1ð Þ pairs of sampled units with the probability qi�j� :
Step 2. Then compute, etHT ¼ tHT þ 1

m

P
i�, j�2s1 ki�j�

ti�
pi�

� tj�
pj�

� �
;

where kij is so chosen that E� etHTð Þ ¼ tHT and V� etHTð Þ ¼ v tHTð Þ: Here E� and V� denote boot-
strap expectation and variance, respectively. This tHT is defined in the Sec. 2.1.

Therefore, k2ijqij ¼ pipj�pij
2pij

m:

Note that, a particular choice of m, qij, kij
� �

is n n� 1ð Þ, 1
n n�1ð Þ , n n� 1ð Þ pipj�pij

2pij

� �1=2� �
:
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Step 3. The same set of m ordered pairs is considered to get the bootstrap estimates for
h2, h3 and h4 whose linear estimators are for

P
s
ci
pi
,
P

s ticiw
0
i and

P
s c

2
i w

0
i: Let, ecHT , etcHT and

ec�HT denote the bootstrap estimates for
P

s
ci
pi
,
P

s ticiw
0
i and

P
s c

2
i w

0
i, respectively.

Step 4. Finally a bootstrap estimate f etHT , ecHT , etcHT , ec�HTð Þ is found for the population total Y:
Step 5. Replicate Step 1 to Step 4, independently, for a large number of times say, B times. Let

bth bootstrap estimate is represented by ~t�bHT, greg:AS: That is, ~t
�b
HT, greg:AS ¼ f etHT , ecHT , etcHT , ec�HTð Þ:

Therefore, the B number of bootstrap estimates say, ~t�1HT, greg:AS,~t
�2
HT, greg:AS, :::,~t

�B
HT, greg:AS are found.

Step 6. The final bootstrap estimate becomes ~tBHT, greg:AS ¼ 1
B

PB
b¼1

~t�bHT, greg:AS and its bootstrap vari-

ance estimate can be written as, ~vHTb:AS ¼ 1
B�1

PB
b¼1

~t�bHT, greg:AS �~tBHT, greg:ASÞ
2
:

�

3.1.2. Proposed re-scaling bootstrap for Rao, Hartley, and Cochran (1962) method of estima-
tion with general adaptive sampling design

Following Rao and Wu (1988, Section 5.1), the re-scaling bootstrap procedure is described below

for the linear total ĥ1 RHCð Þ� ¼
P

s
ti

pi=Qi
(see Eq. (3.3)).

Step 1. A bootstrap sample fti�pi�g
m
i�¼1 of size m is drawn using with replacement procedure from

the original sample ftk , pkgnk¼1, with probabilities Qk:
Step 2. Then compute, etRHC ¼ tRHC þ km�1=2P

i�2s1
ti�
pi�

� tRHC
� �

: This tRHC is defined in Sec. 2.1.

Here, k is so chosen that E� etRHCð Þ ¼ tRHC and V� etRHCð Þ ¼ v tRHCð Þ:

That implies, k ¼ m1=2

Pn

i¼1
N2
i �N

N2�
Pn

i¼1
N2
i

� �1=2

:

Step 3. Step 2 is repeated for
P

s
ci

pi=Qi
,
P

s ticiw
00
i ,
P

s c
2
i w

00
i and the bootstrap estimates ecRHC,

etcRHC, ec�RHC are calculated.
Step 4. Proceeding in a similar way, a bootstrap estimate f etRHC, ecRHC, etcRHC, ec�RHCð Þ is found.
Step 5. Step 1 to Step 4 are replicated B times to get B number of bootstrap estimates,

say, ~t�1RHC, greg:AS,~t
�2
RHC, greg:AS, :::,~t

�B
RHC, greg:AS. Here, ~t�bRHC, greg:AS denotes bth b ¼ 1, 2, :::,Bð Þ boot-

strap estimate.
Step 6. Then, the final bootstrap estimate is ~tBRHC, greg:AS ¼ 1

B

PB
b¼1

~t�bRHC, greg:AS and the bootstrap

variance estimate is ~vRHCb:AS ¼ 1
B�1

PB
b¼1ð~t�bRHC, greg:AS �~tBRHC, greg:ASÞ2:

3.2. Proposed re-scaling bootstrap for size-constrained adaptive sampling with varying
probability designs

The greg estimator for the size-constrained adaptive sampling, using the Horvitz and Thompson

(1952) method of estimation can be written as f
P

s
ei
pi
,
P

s
c0 i
pi
,
P

s eic
0
iw0

i,
P

s c
02
i w

0
i

� �
where ei ¼

1
li

P
j2B ið Þ yj and c0i ¼ 1

li

P
j2B ið Þ xj which are the average y and x (auxiliary variable) values of the

units in ið Þ, respectively. Here, w0
i’s are chosen from 1

pic0i
, 1�pi

pic0i
, 1

c0i
, 1

c02i
, 1

c0gi
; 0 < g < 2ð Þ:

Similarly, the Rao, Hartley, and Cochran (1962) version of the greg estimator can be written

as f
P

s
ei

pi=Qi
,

� P
s

c0i
pi=Qi

,
P

s eic
0
iw

00
i ,
P

s c
02
i w

00
i Þ with the usual choices of w00

i ’s as

Qi
pic0i

, Qi�pi
pic0i

, 1
c0i
, 1

c02i
, 1

c0gi
; 0 <ð g < 2Þ:
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3.2.1. Modifications on re-scaling bootstrap procedure for Horvitz and Thompson (1952)
method of estimation with size-constrained adaptive sampling

In Sec. 2.2, we have seen in Eq. (2.2) that the unbiased variance estimator of size-constrained
adaptive sampling for the HT method of estimation is written as,

v t�HT
� � ¼X

i2s

vR eið Þ
pi

þ
X
i<j2s

X pipj � pij
pij

� � ei
pi

� ej
pj

� �2

¼ v2 þ v1:

Following Pal (2009), two independent bootstrap samples are drawn by suitable bootstrap designs
which are described below:

Step 1. For
P

s
ei
pi
, we have drawn a bootstrap sample s1ð Þ of m pairs f ei�

pi�
, ej�
pj�

� �
; i � , j�ð Þ 2 s, i� 6¼

j�g from n n� 1ð Þ pairs of the original sample feigni¼1, using with replacement procedure with

the probability qi�j�:
Step 2. Then calculate, et1 ¼ t�HT þ 1

m

P
i�, j�2s1 ki�j�

ei�
pi�

� ej�
pj�

� �
:

Here, kij is so chosen that E� et1ð Þ ¼ t�HT and V� et1ð Þ ¼ v1: That implies, k2ijqij ¼ pipj�pij
2pij

m:

A particular choice of m, qij, kij
� �

is n n� 1ð Þ, 1
n n�1ð Þ , n n� 1ð Þ pipj�pij

2pij

� �1=2� �
:

Step 3. Another bootstrap sample s2ð Þ is drawn independently with a success probability r0i for ith

unit, following Hajek (1964)’s Poisson sampling scheme and et2 ¼
P

i�2s2
vR ei�ð Þð Þ1=2

r0 i�
�Pi2s vR eið Þ is

calculated, considering 1
r0 i
¼ piþ1

pi
:

Step 4. So, the bootstrap estimate correspond to the linear estimator
P

s
ei
pi

becomes, ~t�HT ¼
et1 þ et2 which is derived from the bootstrap sample s� ¼ s1, s2ð Þ: Clearly, E� ~t�HT

� � ¼ t�HT
and V� ~t�HT

� � ¼ v t�HTð Þ:
Step 5. Next, the same set s� ¼ s1, s2ð Þ is considered to get the bootstrap estimate forP

s
c0 i
pi
,
P

s eic
0
iw0

i and
P

s c
02
i w

0
i: Thereafter a bootstrap estimate of the population total is derived

as described in the previous section.
Step 6. Step 1 to Step 5 are replicated independently, a large number of times, say B times, and

the bootstrap estimates ~t�1HT, greg ,~t
�2
HT, greg , :::,~t

�B
HT, greg are found. Herein, ~t�bHT, greg denotes bth bootstrap

estimate of the greg estimator.
Step 7. Therefore, the final bootstrap estimate is ~tBHT, greg ¼ 1

B

PB
b¼1

~t�bHT, greg and its bootstrap vari-

ance estimate is given by, ~vbHT ¼ 1
B�1

PB
b¼1

~t�bHT, greg �~tBHT, gregÞ
2
:

�

3.2.2. Modifications on re-scaling bootstrap procedure for Rao, Hartley, and Cochran (1962)
method of estimation with size-constrained adaptive sampling

The unbiased variance estimator of size-constrained adaptive sampling with Rao, Hartley, and
Cochran (1962) method of estimation is (as written in Eq. 2.4),

v t�RHC
� � ¼ Pn

i¼1N
2
i � N

N2 �Pn
i¼1N

2
i

Xn
i¼1

Qi
ei
pi
� t�RHC

� �2
 !

þ
Xn
i¼1

1
li
� 1
mi

� �
1

li � 1

� � X
j2B ið Þ

yj � ejð Þ2
( )Qi

pi

¼ v1 þ v2

Similar to the Horvitz and Thompson (1952) method of estimation defined in Sec. 3.2.1, two
independent bootstrap samples are drawn from the original sample s for

P
s

ei
pi=Qi

:
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The steps are as follows:

Step 1. We have drawn a with replacement sample s1 : fei�pi�g
m
i�¼1 from the original sample with

probability Qk and then compute, es1 ¼ t�RHC þ km�1=2P
i�2s1

ei�
pi�

� t�RHC
� �

; t�RHC is defined in Eq.
(2.3). Here, k is so chosen that E� es1ð Þ ¼ t�RHC and V� es1ð Þ ¼ v1:

Therefore, k ¼ m1=2

Pn

i¼1
N2
i �N

N2�
Pn

i¼1
N2
i

� �1=2

:

Step 2. Another sample s2 is drawn independently, by Poisson Sampling Scheme (Hajek 1964),

with the success probability ri and then compute, es2 ¼
P

i�2s2
vR ei�ð Þð Þ1=2

ri�
�Pi2s vR eið Þ .

Here, ri is so chosen that E� es2ð Þ ¼ 0 and V� es2ð Þ ¼ v2, yielding ri ¼ pi
Qiþpi

:

Step 3. Finally, the bootstrap estimate for
P

s
ei

pi=Qi
becomes ~t�RHC ¼ es1 þ es2 with the basic condi-

tions E� ~t�RHC
� � ¼ t�RHC and V� ~t�RHC

� � ¼ v t�RHCð Þ:

Note that, a variance of the estimator ~t�RHC HTð Þ can be derived as follows,

V ~t�RHC HTð Þ
� �

¼ EASVB ~t�RHC HTð Þ
� �

þ VASEB ~t�RHC HTð Þ
� �

¼ EAS v t�RHC HTð Þ
� �þ VAS t�RHC HTð Þ

� � ¼ 2V t�RHC HTð Þ
� �

;
�

EAS,VAS denote the expectation and the variance operators for general adaptive sampling design
while EB,VB for bootstrap expectation and bootstrap variance, respectively.

Therefore, its unbiased variance estimator becomes 2v t�RHC HTð Þ
� �

for the RHC (HT) method of

estimation. v t�HTð Þ and v t�RHCð Þ are defined in Eq. (2.2) and Eq. (2.4), respectively.

Step 4. Similarly, we get bootstrap estimates for h2, h3 and h4 whose linear estimators areP
s

c0i
pi=Qi

,
P

s eic
0
iw

00
i and

P
s c

02
i w

00
i : Thereafter, one may get the final bootstrap estimate as nar-

rated above.
Step 5. Step 1 to Step 4 are replicated B times to find B number of estimates say,
~t�1RHC, greg ,~t

�2
RHC, greg , :::,~t

�B
RHC, greg : Next, we consider the average of these estimates to reach out to the

final bootstrap estimate, say ~tBRHC, greg :

Therefore, the bootstrap variance estimate is given by, ~vbRHC ¼ 1
B�1

PB
b¼1ð~t�bRHC, greg �~tBRHC, gregÞ2:

4. An alternative approach of re-scaling bootstrap technique for size-constrained
adaptive sampling: Unit-wise bootstrap

An alternative re-scaling bootstrap technique for the size-constrained adaptive sampling has been
suggested here which is termed as unit-wise bootstrap. For every observed sampled unit 2 s, B ið Þ
is a subset of A ið Þ: The unit-wise bootstrap is performed for every subsampled network B ið Þ of ith
unit. The procedure is elaborated in Secs. 4.1 and 4.2 for Horvitz and Thompson (1952) and Rao,
Hartley, and Cochran (1962) methods of estimation, respectively.
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4.1. Unit-wise bootstrap for Horvitz and Thompson (1952) method of estimation

The procedure is described as follows:

Step 1. From B ið Þ, a bootstrap sample of size l�i is selected by SRSWOR.
Step 2. Then,

~yjWOR ¼ ei þ l�i
li�1

� �1
2
1� li

mi

� �1
2
y�j � ei
� �

is computed, denoting y�j as the value of the selected

bootstrap unit, i ¼ 1, 2, :n and j ¼ 1, 2, :::, l�i .

Also, compute eiWOR ¼ 1
l�i

Pl�i
j¼1 ~yjWOR 8i:

Undoubtedly, E� eiWORð Þ ¼ E eið Þ and V� eiWORð Þ ¼ v eið Þ which can be written as,

V� ejWORð Þ ¼ V�
1
l�i

Xl�i
j¼1

~yjWOR

� �

¼ 1
l�2i

:l�i
l�i

li � 1
1� li

mi

� �Xli
j¼1

ðyj � eiÞ2 1li

¼ 1
li � 1

1
li
� 1
mi

� �Xli
j¼1

ðyj � eiÞ2:

The choice of l�i depends on li: Following Rao and Wu (1988), if li > 3 the choice of l�i may be
obtained matching bootstrap third-order moment with the unbiased sample-based third-order

moment estimate implying l�i ¼ li�2ð Þ2
li�1ð Þ ’ li � 3: We use l�i ¼ li � 1 if 1 < li � 3:

Step 3. Now following Horvitz and Thompson (1952) method of estimation, the bootstrap esti-
mate for

P
s
ei
pi
may be defined as ~tp�HT ¼Pn

i¼1
eiWOR
pi

:

Here EP, ER, EB denote the expectation operators with respect to design, subsampling,
and bootstrapping, respectively while VP,VR,VB denote the variance operators, accordingly.

The final variance of this estimator can be written as,V ~tp�HT
� �

¼ EpERVB ~tp�HT
� �

þ EpVREB ~tp�HT
� �

þ
VpEREB ~tp�HT

� �
; that is,

V ~tp�HT
� �

¼ 2
XN
i¼1

VR eið Þ
pi

þ
X
i<j

XN
¼1

pipj � pijð Þ
�

ti
pi

� tj
pj

�2

An unbiased estimator of the V ~tp�HT
� �

may be written as,

v ~tp�HT
� �

¼ 2
X
i2s

vR eið Þ
p2i

þ
X
i<j

X
2s

pipj � pij
pij

� �� ei
pi

� ej
pj

�2

Step 4. For the other three linear estimators
P

s
c0i
pi
,
P

s eic
0
iw

0
i and

P
s c

02
i w

0
i, the bootstrap esti-

mates can be derived as described above. The final bootstrap estimate for the greg estimator will
be the same non-linear function }f } (defined in Sec. 3) of the related bootstrap estimates of the
linear totals.
Step 5. The whole procedure is replicated a large number of times say, B times. Denoting ~tpbHT:greg
as bth bootstrap estimate, the final bootstrap estimate may be defined as,
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tPHT, greg ¼
1
B

XB

b¼1
~tpbHT, greg :

Therefore, the related bootstrap variance estimate is,

~vPb,HT ¼ 1
B� 1

XB
b¼1

ð~tpbHT, greg � tPHT, gregÞ2:

4.2. Unit-wise bootstrap for Rao, Hartley, and Cochran (1962) method of estimation

As described in Sec. 4.1, we draw a bootstrap sample from B ið Þ 8 i ¼ 1, 2, :::, n : Here, Step 1
and Step 2 will be the same as described in the previous section. In Step 3, the bootstrap estimate
for
P

s
ei

pi=Qi
, using Rao, Hartley, and Cochran (1962) method of estimation may be defined as,

~tp�RHC ¼
Xn
i¼1

eiWORQi

pi
:

The related variance may be defined as,

V ~tp�RHC
� �

¼ EpERVB ~tp�RHC
� �

þ EpVREB ~tp�RHC
� �

þ VpEREB ~tp�RHC
� �

;

It reduces to

V ~tp�RHC
� �

¼ 2
XN
i¼1

QiVR eið Þ
pi

þ
Pn

i¼1N
2
i � N

N2 �Pn
i¼1N

2
i

Xn
i¼1

Qi
ti
pi
� tRHC

� �2
 !

;

and the related unbiased variance estimator is

v ~tp�RHC
� �

¼ 2
Xn
i¼1

Q2
i vR eið Þ
p2i

þ
Pn

i¼1N
2
i � N

N2 �Pn
i¼1N

2
i

Xn
i¼1

Qi
ei
pi
� t�RHC

� �2
 !

:

Step 4 and Step 5 will be the same as described in Sec. 4.1, with the necessary changes required
for the RHC method of estimation. Denoting ~tpbRHC:greg as bth bootstrap estimate for the greg esti-
mator, our final bootstrap estimate may be written as, tPRHC, greg ¼ 1

B

PB
b¼1

~tpbRHC, greg with related
bootstrap variance estimate as,

~vPb,RHC ¼ 1
B� 1

XB
b¼1

ð~tpbRHC, greg � tPRHC, gregÞ2:

5. Simulation study

A numerical illustration is performed to examine the performances of the proposed re-scaling
bootstrap methods discussed in Secs. 3 and 4. We have used here the data from “The National
Wasteland Identification Project”, available in the link https://dolr.gov.in/district-and-category-
wise-wastelands-year-2000. District-wise wastelands due to salinity, degradation, water-logging,
Marshy land are given there. We concentrate on the Southern region of India including six states
(Andhra Pradesh, Kerala, Karnataka, Tamil Nadu, Goa, and Maharashtra) in estimating its salin-
ity wasteland areas (in km2). So, the salinity wasteland area (in km2) is considered as the study
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variable yð Þ: These six states comprise 86 districts Nð Þ in total, 23 of which have such wasteland
covering an area of 1070.72 km2(Y). The wastelands due to upland and district-wise geographical
area are considered as an auxiliary xð Þ and a size measure variables zð Þ respectively. The auxiliary
variable xð Þ is highly correlated with the study variable yð Þ: The initial sample is drawn by varying

probability sampling scheme using the size measure variable zð Þ: The total area under upland Xð Þ
is 31341.27 km2.

First, an initial sample of size 19 nð Þ is drawn by Lahiri (1951), Midzuno (1951), and Sen
(1953) sampling scheme. Considering the presence of salinity wasteland as a rare unit, the adap-
tive sampling procedure is used to enhance more rare units in the initial sample. For each of the
initially sampled unit i, its network A ið Þ is found. The performances of the bootstrap procedures
are measured using the following criteria and shown in Tables 1 and 2. The criteria are (a)
Average coefficient of variation (ACV), (b) Average coverage percentage (ACP), (c) Relative Bias
(RB), (d) Simulated mean square error (SMSE), and e) Relative root mean square error (RRMSE).

For this, a large number of replicated samples (say R¼ 10,000) have been drawn to judge the
efficacy of our proposed procedures. The RB, SMSE, RRMSE may be written as,

RB t̂greg
� � ¼ 1

R

XR

j¼1

ð̂tðjÞgreg � sÞ
s

, SMSE ¼ 1
R

XR
j¼1

ð̂tðjÞgreg � sÞ2 and

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

PR
j¼1ð̂t

ðjÞ
greg � sÞ2

r
s

where t̂
jð Þ
greg is the estimate of the population parameter sð Þ obtained for jth replicate, using any

bootstrap method discussed in Secs. 3 and 4. ACV is the average over R¼ 10,000 replicates of

estimated CV’s, i.e., 100: 1R
P

R
Estimated MSE estimateð Þ

estimate . Usually, ACV less than 10% indicates an excel-
lent estimator of tgreg and at most 30% is acceptable. The 95% confidence intervals (CI) are calcu-
lated using the percentile method and with normal approximations. The percentage number of
times the CI covers Y is called ACP.

To get the confidence interval (CI) based on the percentile method, lower and upper 2.5%

points are taken from the histogram constructed with the values ~t1�, greg ,~t
2
�, greg , :::~t

B
�, greg ; B¼ 10,000

Table 1. Overall comparisons of the proposed bootstrap method.

Horvitz Thompson Rao Hartley Cochran

Re-scaling Bootstrap Relative Bias SMSE RRMSE Relative Bias SMSE RRMSE

General Adaptive Sampling �0.01118 12698.1 0.105243 0.087345 66263.56 0.240415
Size-constrained Adaptive Sampling 0.048065 21625.12 0.137342 0.064481 63933.024 0.236149
Size-constrained Adaptive Sampling

(Alternative method)
0.104782 31077.28 0.164644 0.086732 65701.84 0.239394

Table 2. Overall comparisons of the proposed bootstrap by ACV, ACP, and AL.

Horvitz Thompson Rao Hartley Cochran

Re-scaling Bootstrap Average length ACV (%) ACP (%) Average length ACV (%) ACP (%)

General Adaptive
Sampling

8.9225 (9.0224) 0.4426 39.097 (39.098) 899.0191
(922.4029)

21.3718 88.235
(86.275)

Size-constrained
Adaptive Sampling

22.4916
(23.0232)

1.7215 35.9677 (36.76) 878.2599
(933.1224)

22.3058 88.235
(92.157)

Size-constrained
Adaptive Sampling
(Alternative method)

265.6508
(298.3653)

6.4223 60.78
(62.745)

1542.466
(1782.6)

23.0034 96.078
(100)

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 11



for the entire sample, drawn from the population, and before doing this, make sure that the pro-
cess is simulated a large number of times. For each simulation, the CI l0:025 rð Þ, u0:975 rð Þð Þ is eval-
uated. Tables 3 and 4 show performance reports of a particular simulation.

In Table 1, it is seen that the HT method of estimation is more efficient than the RHC method
of estimation, in terms of RB, SMSE, RRMSE. Also, the performances based on ACV and AL (in
Table 2) indicate that the HT method of estimation is more efficient than the RHC method of
estimation. But the comparison based on ACP contradicts the above consideration.

The performances of re-scaling bootstrap methods, proposed in Secs. 3.2 and 4 can be com-
pared using the second and third row of Tables 1 and 2. In terms of RRMSE and ACV, no such
significant differences are observed for these two proposed methods, mentioned in Secs. 3.2.2 and
4.2, for the RHC method of estimation. But the ACP value is improved significantly for the unit-
wise bootstrap method, irrespective of the choices of the methods of estimation.

6. Concluding remarks

In this study, the modifications of re-scaling bootstrap methods for general adaptive sampling
and size-constrained adaptive sampling are proposed for Horvitz and Thompson (1952) and Rao,
Hartley, and Cochran (1962) methods of estimation. Through the simulation study, it is observed
that the coverage probabilities for the Horvitz and Thompson (1952) method of estimation are
extremely low. In terms of RB, SMSE, RRMSE, AL, and ACV, the HT method of estimation is
better than the RHC method of estimation. Also, we have derived the unit-wise bootstrap tech-
nique for size-constrained adaptive sampling (in Sec. 4) which gives us satisfactory results in
terms of ACP and ACV values for both methods of estimation.

So, it may be concluded that the efficacy of re-scaling bootstrap procedure in general adaptive
sampling and size-constrained adaptive sampling for the HT method of estimation is more effi-
cient than the RHC method of estimation in terms of ACV, AL, RB, RRMSE, and SMSE. But the
performance in terms of ACP value is unsatisfactory for the HT method of estimation. It is note-
worthy that Perez and Pontius (2006) also worked on bootstrap procedures for Thompson’s adap-
tive sampling design and pointed out the same issue regarding the coverage rate for the HT
method of estimation. But the proposed unit-wise bootstrap technique for the size-constrained

Table 3. Performance of proposed bootstrap in RHC method of estimation using percentile (normal) method.

Simulation Number 500

Re-scaling Bootstrap
Bootstrap
Estimate Sqrt. MSE Lower 2.5% point Upper 2.5% point Length

General Adaptive
Sampling

999.2539 269.08 482.5308
(471.8572)

1510.034
(1526.651)

1027.503
(1054.793)

Size-constrained
Adaptive Sampling

1077.181 207.815 697.0772
(669.8636)

1456.3006
(1484.498)

759.2234
(814.6349)

Size-constrained Adaptive
Sampling (Alternative method)

1137.164 382.3698 478.2055
(387.7191)

1607.724
(1886.609)

1129.519
(1498.89)

Table 4. Performance of proposed bootstrap with HT method of estimation using percentile (normal) method.

Simulation Number 500

Re-scaling Bootstrap
Bootstrap
Estimate Sqrt. MSE Lower 2.5% point Upper 2.5% point Length

General Adaptive Sampling 1074.191 2.2942 1069.986 (1069.694) 1078.78 (1078.688) 8.794 (8.9932)
Size-constrained

Adaptive sampling
1061.982 7.2429 1049.252

(1047.786)
1079.939
(1076.178)

30.687
(28.392)

Size-constrained Adaptive
Sampling (Alternative method)

1165.013 70.94305 1037.048
(1025.965)

1267.424
(1304.061)

230.376
(278.096)
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adaptive sampling procedure improves the ACP value significantly, for both HT and RHC meth-
ods of estimation. Also, the implementation of the proposed unit-wise bootstrap procedure is eas-
ier than the methods as described in Sec. 3.2.
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