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Abstract
Adaptive cluster sampling (ACS) due to Thompson (J Am Stat Assoc 85(412):1050–1059, 
1990) is a tool to survey rare and hidden elements in a population as an improvement over 
traditional survey procedures. In ACS, if an observed sampled unit satisfies the given crite-
rion of rarity, its neighboring units are added to the sample and this is continued until one 
is detected with no rarity. Chaudhuri (Calcutta Stat Assoc Bull 50(3–4):238–253, 2000) 
extended the above to unequal probability sampling as Adaptive sampling. In practice, 
often network sizes turn out too big demanding high cost and time. So, Chaudhuri et al. 
(J Stat Plan Inference 121: 175–189, 2004) gave a subsampling technique to restrict the 
sample size in Adaptive Sampling. Towards this end, Chaudhuri et al. (J Stat Plan Infer-
ence 134: 254–267, 2005) developed a sample size restriction technique. But in Adaptive 
sampling, capturing neighboring rare units turn out difficult because of various hazards. 
We propose to try Royall’s (Biometrika 57: 377–389, 1970) prediction approach here to 
model features of uncaptured network units. We employ Brewer’s (J Am Stat Assoc 74 
(368): 911–915, 1979) model-assisted approach to derive a predictor with asymptotic 
design unbiasedness based on unequal probability samples and examine its efficacy by 
simulations.

Keywords Adaptive sampling · Asymptotic · Model assisted approach · Prediction 
approach · Unequal probability

Mathematics Subject Classification 62D05

1 Introduction

Thompson [24] introduced the Adaptive Cluster Sampling (ACS) technique for esti-
mating the population total or mean of the rare and hidden clustered population. Later 
Thompson [25–27], Thompson and Seber [28], Seber and Salehi [22] elaborated their 
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ideas where original samples were drawn by simple random sampling (SRS). But in a 
survey, we frequently face a situation where an unequal probability sampling scheme 
has been used. Chaudhuri [5] discussed the necessary changes of ACS when the origi-
nal sample was drawn by an unequal probability sampling scheme and mentioned the 
design as adaptive sampling.

Let U = (1, 2, ....., N) be a finite population of N  units and y =
(
y1, y2, ..., yN

)
 be a 

study variable relating to the rare and clustered characteristics. We are interested in 
estimating the population total �Y =

∑N

i=1
yi . In adaptive sampling, first, an initial sam-

ple of size n is chosen by any sampling design, and the value of y is observed on them. 
A rarity criterion is defined as yi > C , with the predetermined value C . Whenever the 
observed unit satisfies the pre-defined condition of rarity, well-defined neighboring 
units are observed for further detection of the rare units. The process is continued until 
the network is bounded by edge units with no rarity condition. According to Thomp-
son [24], the neighborhood unit’s relation is symmetric: if the unit i is a neighbor of 
the unit j , then j is also a neighbor of the unit i, i ≠ j. Those neighboring units do 
not satisfy the given rarity condition, are called the “edge units”. A collection of sev-
eral neighborhoods corresponding to the ith initial unit satisfying the rarity criterion is 
termed as “cluster”. Dropping all the edge units from the cluster, the rest of the units 
which satisfy the pre-fixed condition belong to the “network” of that particular initial 
unit. In socio-economic surveys and geographical surveys, network sizes may end in 
exorbitantly large for pre-assigned initial sample size. Keeping this in mind, Brown 
and Manly [3] presented a way of limiting the final sample size, called restricted adap-
tive cluster sampling but their estimators are positively biased though, the bias was 
successfully estimated by bootstrapping. More recently, Gattone et al. [12] provided a 
stopping rule criterion to overcome the sample size issue. That practical difficulty was 
also encountered by Chaudhuri et al. [7] where the initial sample was drawn by une-
qual probability sampling. They prescribed a design-based method, adding a constraint 
on the network sizes after ascertaining the networks of the initial sampling units. Ear-
lier Chaudhuri et  al. [8] elaborated another design-based method, the subsampling 
technique approach tackling the large network size problem.

But it does not solve the problem of handling unobserved units in the network. It 
may be difficult to capture all the neighboring units in a particular network A(i) of the 
ith sampled unit due to the various hazardous conditions. The investigators may be 
unable to cover the whole part of the network due to hill or rocky area or bad weather 
or due to deadly animals etc. as hazardous conditions. Highlighting this deficiency, a 
model-assisted approach (Särndal et al. [21]) on unequal probability sampling has been 
proposed here by employing Royall’s [20] prediction approach to model the uncap-
tured part of the network. Brewer’s [1] model-assisted approach has been employed to 
derive the predictor of the population total.

This article is organized as follows: In Sect.  2.1, we briefly review the adaptive 
sampling design with unequal probability. In Sect. 3, we describe the proposed model-
assisted approach along with the unbiased estimators of the population totals and the 
related estimators of their variances. Using the district wise published data of the 
National Wasteland and Identification project (https ://dolr.gov.in/distr ict-and-categ ory-
wise-waste lands -year-2000), Sect. 4 presents numerical illustrations to predict the area 
of salinity wasteland in Southern India–Andhra Pradesh, Karnataka, Kerala, Tamil 
Nadu, Goa, and Maharashtra. The concluding remarks are finally incorporated.

https://dolr.gov.in/district-and-category-wise-wastelands-year-2000
https://dolr.gov.in/district-and-category-wise-wastelands-year-2000
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2  Adaptive sampling design

According to Thompson [24–27], an initial sample of size n is drawn from the popula-
tion U by simple random sampling without replacement (SRSWOR) and the y values 
of the sampled units are observed then. If a rare unit bearing the criterion yi > C is 
found, its neighborhood units are searched to get more units with rarity condition. This 
procedure is continued until a network A(i) is formed corresponding to the ith initial 
unit. Let mi denotes the number of units in the ith(i = 1, 2, ...., n) network. Thompson 
[24] suggested two modified estimators of the population total,�Y =

∑N

i=1
yi or mean 

�Y =
1

N

∑N

i=1
yi following Hansen–Hurwitz (HH) [13] and Horvitz–Thompson (HT) [14].

Suppose, K is the number of distinct networks present in the population U of which k 
are in the final sample while initial sampling begins with SRSWOR. Also, let �i be the 
probability of selecting the ith network in the sample and y∗

i
 be the sum of all y values 

present in the ith network and tHT =
∑k

i=1

y∗
i

�i

 be the modified HT estimator [13] of popu-

lation total �Y . Here, �i = 1 −

(
N − mi

n

)
∕

(
N

n

)
∀i = 1, 2, ..., k.

The variance of the above estimator is V
�
tHT

�
=
∑K

i=1

∑K

j=1

�ij−�i�j

�i�j

y∗
i
y∗

j
  where 

�ij = 1 −

⎧
⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎝
N − mi

n

⎞⎟⎟⎠
+

⎛⎜⎜⎝
N − mj

n

⎞⎟⎟⎠
−

⎛⎜⎜⎝
N − mi − mj

n

⎞⎟⎟⎠
⎛
⎜⎜⎝

N

n

⎞
⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

 is the probability of selecting the ith 

and jth networks.
An unbiased estimator of the above variance is given by v

�
tHT

�
=
∑k

i=1

∑k

j=1

�ij−�i�j

�ij�i�j

y∗
i
y∗

j
.

Another unbiased estimator for population total called modified HH estimator [13] is 
defined as tHH =

∑n

i=1

y∗
i

mi

=
∑n

i=1
y∗

i
 whose variance can be written as follows, 

V
�
tHH

�
=

n(N−n)

N(N−1)

∑N

i=1

�
y∗

i
− N−1�Y

�2

 . An unbiased variance estimator of the modified HH 
estimator is v

�
tHH

�
=

n(N−n)

N(n−1)

∑n

i=1

�
y∗

i
− tHH

�2.

2.1  Adaptive sampling with unequal probability

Chaudhuri [5] extended the ACS design under the unequal probability sampling scheme. 
According to his approach, an initial sample s of size n is drawn from the population U by a 
general sampling design say, p(s) instead of SRSWOR. To do so, a size measure variable z 
(auxiliary variable may be) has been considered which is known for the entire population. 
It is obvious that the variable z is not rare. So, it may be available for the entire population. 
After the selection of the initial sample by unequal probability sampling design, the rest of 
the adaptive sampling procedure is the same as Thompson [24].

Let the ith sampled unit be observed as rare and starting from it, a network A(i) is formed 
with cardinality mi ∀i = 1, 2,… , n . Then the average of y values say ti is given by 
ti =

1

mi

∑
j∈A(i) yj . If an unit not satisfying the rarity criterion is present in the initial sample, 

it will form a network of size mi = 1 . Chaudhuri [5] also observed that 
�T =

∑
i∈U ti =

∑
i∈U yi = �Y . So it may be concluded that the estimation of �Y is equivalent 

to the estimation of �T.
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Then the HT estimator [14] to estimate �T =
∑N

i=1
ti , equivalently �Y =

∑N

i=1
yi is defined 

as tHT =
∑

i∈s

ti

�i

 where the first order inclusion probability of the ith unit in the sample is 
denoted as �i =

∑
s∋i p(s) . The distinct network concept of Thompson [24]’s approach has 

not been used here. For each initial sampled unit, a network is formed.
Following Chaudhuri [5], an unbiased estimator of the related variance 

V
�
tHT

�
=
∑N

i<j=1

∑�
𝜋i𝜋j − 𝜋ij

�
(

ti

𝜋i

−
tj

𝜋j

)2 is given by v
�
tHT

�
=
∑

i<j∈s

∑�
𝜋i𝜋j−𝜋ij

𝜋ij

�
(

ti

𝜋i

−
tj

𝜋j

)2 
denoting �ij  as the second order inclusion probability of ith and jth units in the sample.

In the usual sampling process, we use a general sampling design termed as conventional 
sampling design. In the conventional sampling design, the unbiased estimator of the popu-
lation total �Y =

∑N

i=1
yi will be the same as tHT , only replacing ti by yi i.e. the HT estimator 

of the population total may be termed as,eTS =
∑

i∈s

yi

�i

 . The related unbiased variance esti-
mator will be the same as v

(
tHT

)
 , just replacing  ti by yi . The Yates-Grundy [30] form of the 

related unbiased variance estimator is given by v
�
eTS

�
=
∑

i<j∈s

∑�
𝜋i𝜋j−𝜋ij

𝜋ij

�
(

yi

𝜋i

−
yj

𝜋j

)2.
But in practice, network size ( mi ) may turn out exorbitantly large demanding high 

resources even if the initial sample size is moderate in size. Outlining that limitation, 
Chaudhuri et  al. [8] prescribed a design-based approach where initial samples were 
drawn by unequal probability scheme. Assuming the known structure of the ith network 
A(i)∀i = 1, 2,… , n , a suitable subsample of the network A(i) , say B(i) has been sug-
gested. This work was extended in Chaudhuri et al. [7] in which the subsample is drawn by 
SRSWOR with cardinality li such that 

∑
i∈s li may not exceed the predefined final sample 

size L . Such a technique is called “sample-size-restrictive adaptive sampling”.

3  Proposed model assisted prediction approach

This article is an attempt to lay bare a salient feature of adaptive design in a real survey. 
Sometimes surveyor may be unable to capture all the specified units due to the crucial 
causes as already mentioned in the introduction. If the network size is unmanageably large, 
Chaudhuri et al. [7, 8]’s subsampling approach is required for each network of the sampled 
units. But this approach can’t be implemented in the presence of unobserved units.

Let, the ith sampled unit’s network A(i) has a part which is unobserved due to hazardous 
condition. Denoting As(i) as the observed part of the network A(i) and Rs(i) as unobserved 
part, it can be written as,

It is obvious that, As(i) ∪ Rs(i) = A(i)∀i ∈ s.
Undoubtedly, the second part of the above expression is 

∑
j∈Rs(i)

yj unknown as these are 
unobserved. It follows immediately that ti is also unknown.

Now the main task is to predict the unknown part Rs(i) of the ith unit’s network.
A predictor of ti can be written as,

denoting  est(
∑

j∈Rs(i)
yj) the estimate of unknown 

∑
j∈Rs(i)

yj.

ti =
1

mi

∑
j∈A(i)

yj =
1

mi

(
∑

j∈As(i)

yj +
∑

j∈Rs(i)

yj).

t̂i =
1

mi

(
∑

j∈As(i)
yj + est(

∑
j∈Rs(i)

yj));
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At this point, the question arises how the network A(i)∀i = 1, 2,… , n is known in the 
presence of unobserved units. Let us consider the following two situations:

(a) In estimating the area (in  km2) under soil degradation, high-resolution satellite and 
airborne images have been primarily used for mapping. The image characteristics, such 
as color, tone, texture, pattern, and shape identify the different types of wasteland. But 
the accuracy can be achieved by correlating them with the ground survey.

(b) Traditional methods for monitoring endangered or wild animals mainly rely on ground 
surveys. But survey regions are often difficult to access on the ground. For this reason, 
the modern survey considers thermal and infrared imagery to improve the counting of 
endangered animals like white-tailed deer. A ground survey along with GPS data has 
been used. So, the network of ith unit i.e.A(i) ∀i = 1, 2,… , n may be known before 
starting a ground survey.

In this section, we develop here two models using the features of unobserved units. The 
basic approach in such a problem is to predict the unobserved part of A(i) employing linear 
regression models with Brewer’s [2] and Royall’s [20] prediction approach. A well cor-
related (positively) auxiliary variable is required for such a model. The use of an auxiliary 
variable in an adaptive sampling design is nothing new. Lee [18] used an auxiliary vari-
able to develop the theory of an ACS two-phase design where in the first phase a sample 
was based on an auxiliary variable and in the second phase, a sample was selected from 
the first phase using probability proportional to size with replacement (PPSWR) sampling. 
Later Felix-Medina and Thompson [10] also employed an inexpensive and easy to measure 
auxiliary variable in their adaptive cluster double sampling literature. Gattone et al. [11] 
used a negatively correlated auxiliary variable with the variable of interest to provide a 
precise estimate. Latpate and Kshirsagar [16, 17] in their literature also considered highly 
negatively correlated variables to develop negative adaptive cluster sampling and negative 
adaptive cluster double sampling. In Chaudhuri’s unequal probability sampling approach, 
Chaudhuri et al. [7] employed an easily available auxiliary variable that was not surveyed 
during the study of the rare variable. They had taken the auxiliary variable from the Indian 
Population Census (1991) to perform with generalized regression (Greg) estimator (Cassel 
et al. [4], Särndal et al. [21]).

In this study x is an easily available auxiliary variable whose values are known. We 
provide here, two different models described in the following Sects. 3.1 and 3.2. By these 
models the unobserved part of ti may be predicted.

3.1  Measure without intraclass correlation

Suppose the ith unit is selected in the initial sample and the network A(i) is formed with 
mi number of units i.e. 

{
yj ∶ j ∈ A(i)

}
, j = 1, 2, ..., mi . Some of the units belonging to this 

network are unobserved and predicted by the following models.
Model 1: The model M1 for A(i) may be defined as follows:
M1 ∶ yj = �ixj + �j , �i be the unknown constant and �j ’s are random variables having the 

following features

EM1

(
�j

)
= 0
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Any predictor of ti under the above model can be expressed as,
t̂i =

1

mi

�∑
j∈As(i)

yj + 𝛽i

∑
j∈Rs(i)

xj

�
.

For simplicity, we impose linearity condition on 𝛽i i.e.𝛽i =
∑

j∈As(i)
ljyj where li ’s are con-

stant such that Em

(
𝛽i

)
= 𝛽i . Now, this 𝛽i  is so chosen that Em

(
𝛽i − 𝛽i

)2 is least which is 
equivalent to minimize the model-based variance Em(

∑
j∈As(i)

ljyj − �i)
2 subject to the model 

unbiasedness condition 
∑

j∈As(i)
ljxj = 1.

That implies,

and it is the best linear unbiased predictor (BLUP) for 𝛽i.
Hence a predictor,

of ti can be derived but this predictor t̂i0 is unusable as �2
j
 ’s ∀j ∈ A(i) are unknown.

Following Brewer’s [1] prediction approach the model-assisted predictor for ti may be pro-
posed as

where bQi
=

∑
j∈As (i)

yjxjwj∑
j∈As (i)

x2
j
wj

;wj ’s are assignable constants. Following Brewer [1], wj may be 

taken as 1−�j

�jxj

.
The predictor tgi is also called the “Generalized regression predictor” or Greg predictor. 

(Cassel et al. [4], Särndal et al. [21]). It may be noted that the total of all the x values of the 
network A(i) is known.

The asymptotic model unbiased expectation of tgi  can be written as follows,

VM1

(
�j

)
= �2

j
(unknown)

EM1

(
�j, �k

)
= 0, i = 1, 2...N; j, k ∈ A(i); j ≠, k.

𝛽i0 =

( ∑
j∈As(i)

yjxj

𝜎2
j

)
∕(

∑
j∈As(i)

x2
j

𝜎2
j

),

t̂i0 =
1

mi

[ ∑
j∈As(i)

yj +

( ∑
j∈Rs(i)

xj

)( ∑
j∈As(i)

yjxj

𝜎2
j

)
∕

( ∑
j∈As(i)

x2
j

𝜎2
j

)]
,

tgi =
1

mi

[ ∑
j∈As(i)

yj

�j

+ bQi

(∑
j∈A(i)

xj −
∑

j∈As(i)

xj

�j

)]
,

limEM1

�
tgi

�
=

1

mi

⎡⎢⎢⎢⎢⎢⎣

EM1

� �
j∈As(i)

yj

�j

�
+

limEM1

�
∑

j∈As(i)

yjxjwj

�

limEM1
(
∑

j∈As(i)

x2
j
wj

��
j∈A(i)

xj − EM1

� �
j∈As(i)

xj

�j

��⎤⎥⎥⎥⎥⎥⎦

=
1

mi

[
�

j∈A(i)

yj +

∑
j∈A(i)

yjxjwj�j

∑
j∈A(i)

x2
j
wj�j

(
�

j∈A(i)

xj −
�

j∈A(i)

xj)] =
1

mi

�
j∈A(i)

yj = ti.
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Hence, tgi be an unbiased predictor of ti and e =
∑

i∈s

tgi

�i

  be an unbiased predictor of ∑N

i=1
ti = �T . So for �Y =

∑N

i=1
yi . It has to be noted that  tgj = tj if all the units belonging to 

the jth(j ∈ s) unit’s network are observed.
The recommended predictor for the whole population total �Y =

∑N

i=1
yi is

and the corresponding variance is

denoting Ep, Vp as the expectation, variance respectively using the design p and EM1
, VM1

 
stand for the expectation, variance respectively for the model M1.

The unbiased variance estimator v(e) can be computed as follows.
Considering v1(e) =

∑
i<j∈s

∑�
𝜋i𝜋j−𝜋ij

𝜋ij

��
tgi

𝜋i

−
tgj

𝜋j

�2

+
∑

i∈s

vM1
(tgi)
𝜋2

i

  as the unbiased variance 

estimator of V(e) , we may write

So, v1(e) −
∑

i<j∈s

∑ (𝜋i𝜋j−𝜋ij)
𝜋ij

�
vM1

(tgi)
𝜋2

i

+
vM1

(tgj)
𝜋2

j

�
  is the unbiased estimator of V(e).

Thus, the unbiased variance estimator v(e) is given as,

e =
∑
i∈s

tgi

�i

,

V(e) = EPVM1
(e) + VPEM1

(e) = EPVM1

(∑
i∈s

tgi

𝜋i

)
+ VPEM1

(∑
i∈s

tgi

𝜋i

)

=

N∑
i=1

VM1

(∑
i∈s

tgi

𝜋i

)
+ VP(

∑
i∈s

ti

𝜋i

) =

N∑
i=1

VM1

(∑
i∈s

tgi

𝜋i

)

+

N∑
i<j=1

∑(
𝜋i𝜋j − 𝜋ij

)
(

ti

𝜋i

−
tj

𝜋j

)2,

E
(
v1(e)

)
= EPEM1

(
∑

i<j∈s

∑(
𝜋i𝜋j − 𝜋ij

𝜋ij

)
(
tgi

𝜋i

−
tgj

𝜋j

)2) + EPEM1
(
∑

i∈s

vM1

(
tgi

)

𝜋2
i

)

= EP

(∑
i<j∈s

(
𝜋i𝜋j − 𝜋ij

𝜋ij

)
EM1

(
t2
gi

𝜋i

+
t2
gj

𝜋j

− 2
tgi

𝜋i

tgj

𝜋j

)
) + EP

(∑
i∈s

VM1

(
tgi

)

𝜋2
i

)

= EP(
∑

i<j∈s

(
𝜋i𝜋j − 𝜋ij

𝜋ij

)
(

(
ti

𝜋i

−
tj

𝜋j

)2 +
VM1

(
tgi

)

𝜋2
i

+
VM1

(
tgj

)

𝜋2
j

)

+
∑N

i=1

VM1

(
tgi

)

𝜋i

=
∑N

i<j=1

∑(
𝜋i𝜋j − 𝜋ij

)
(

ti

𝜋i

−
tj

𝜋j

)2 +
∑N

i=1

VM1

(
tgi

)

𝜋i

+
∑N

i<j=1

∑(
𝜋i𝜋j − 𝜋ij

)(VM1

(
tgi

)

𝜋2
i

+
VM1

(
tgj

)

𝜋2
j

)

= V(e) +
∑

i<j

∑(
𝜋i𝜋j − 𝜋ij

)(VM1

(
tgi

)

𝜋2
i

+
VM1

(
tgj

)

𝜋2
j

)
.
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where vM1

�
tgi

�
=

1

m2
i

∑
k<l∈As(i)

∑�
𝜋k𝜋l−𝜋kl

𝜋kl

��
ek

𝜋k

−
el

𝜋l

�2

  and ej = yj − bQixj.

3.2  Measure with intraclass correlation

In adaptive sampling, a correlation between the units of the same network defined as intra-
class correlation may be present and it is denoted by � . The following model considers 
such kind of feature to develop a predictor.

Model 2: M2 ∶ yj = �ixj + �j , �i be the unknown constant and �j ’s are random variables 
having the following features

Then ti can be estimated through the best linear unbiased predictor.
Now the model unbiasedness condition EM2

(
t̂i
)
= ti implies 

EM2

��
𝛽i − 𝛽i

�∑
j∈Rs(i)

xj

�
= 0 . It is possible if EM2

(
𝛽i

)
= 𝛽i with the linearity condition 

𝛽i =
∑

j∈As(i)
Bjyj which is equivalent to 

∑
j∈As(i)

Bjxj = 1.
Thus, we have to minimize the mean square error (MSE) MSEi = EM2

(
t̂i − ti

)2 subject 
to the condition 

∑
j∈As(i)

Bjxj = 1.
Mean square error for the predictor of ti  is given as

v(e) =
∑

i<j∈s

∑(
𝜋i𝜋j − 𝜋ij

𝜋ij

)
(
tgi

𝜋i

−
tgj

𝜋j

)2 +
∑
i∈s

vM1

(
tgi

)

𝜋2

i

−
∑

i<j∈s

∑(
𝜋i𝜋j − 𝜋ij

𝜋ij

)(
vM1

(
tgi

)

𝜋2

i

+
vM1

(
tgj

)

𝜋2

j

)

EM2

(
�j

)
= 0, VM2

(
�j

)
= �2

j
(Unknown), EM2

(
�j, �k

)
= ��j�k where

i = 1, 2...N

j, k ∈ A(i)j ≠ k
.

MSEi = EM2
(̂ti − ti)

2 = EM2
(�̂i

�
j∈Rs(i)

xj

mi

−
�

j∈Rs(i)

yj

mi

)2

=
1

m2
i

EM2
((�̂i − �i)

�
j∈Rs(i)

xj −
�

j∈Rs(i)

(yj − �ixj))
2 =

1

m2
i

[(
�

j∈Rs(i)

xj)
2EM2

(�̂i − �i)
2

+ EM2
(
�

j∈Rs(i)

�
yj − �ixj

�
)2 − 2EM2

[((�̂i − �i)
�

j∈Rs(i)

xj)(
�

j∈Rs(i)

(yj − �ixj)]]

=
1

m2
i

[(
∑

j∈Rs(i)
xj)

2EM2
(
∑

j∈As(i)
(Bj

�
yj − �ixj

�
)2) + EM2

(
∑

j∈Rs(i)
�j)

2

−2EM2
[(
∑

j∈Rs(i)
xj

∑
j∈As(i)

Bj(yj − �ixj))
∑

j∈Rs(i)
�j]]

=
1

m2
i

[(
�

j∈Rs(i)

xj)
2EM2

(
�

j∈As(i)

Bj�j)
2

+ EM2
(
�

j∈Rs(i)

�j)
2 − 2(

�
j∈Rs(i)

xj)EM2
[(

�
j∈As(i)

Bj�j)(
�

k∈Rs(i)

�k)]]

=
1

m2
i

[(
�

j∈Rs(i)

xj)
2
(
�

j∈As(i)

B2
j
EM2

(�2
j
) +

�
k, j ∈ As(i)

k ≠ j

�
BkBjEM2

(�k�j))

+ EM2
(
�

j∈Rs(i)

�2
j
+

�
j, k ∈ Rs(i)

j ≠ k

�
�j�k) − 2(

�
j∈Rs(i)

xj)EM2
(
�

j∈As(i)

�
k∈Rs(i)

Bj�j�k)
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For the simplicity of derivation, we have followed Chaudhuri and Stenger [6], Särndal 
et al. [21], to approximate the unknown �j where �j = �exj , with 𝜎e(> 0) as unknown and x′

j
s 

known. Then, we get

Taking � as a Lagrangian multiplier and solving the following equation,

we get, � = 2
�2

e

m2
i

(1 − �)
(
∑

j∈Rs (i)

xj)
2

(
∑

j∈As (i)

1)
.

Consequently, Bj =
1

xj

�∑
j∈As (i)

1
� ; and 𝛽i =

∑
j∈As(i)

yj

xj

�
1∑

j∈As (i)
1

�
.

Hence, the predictor of ti is

Also, the resulting value of the MSEi is MSEio =
�2

e

m2
i

(1 − �)

�
∑

j∈Rs(i)
x2

j
+

�∑
j∈Rs (i)

xj

�
�∑

j∈As (i)
1
�

2
�

.

Under the above model,

is an unbiased predictor for  
∑N

i=1
ti = �T and also for �Y =

∑N

i=1
yi.

Then the unbiased estimator of variance v
(
e′
)
 is

MSEi =
1

m2
i

�2
e

�
(
�

j∈Rs(i)

xj)
2(

�
j∈As(i)

B2
j
x2

j
+

�
k, j ∈ As(i)

k ≠ j

�
�BkBjxkxj)

+

⎛⎜⎜⎜⎜⎜⎝

�
j∈Rs(i)

x2
j
+

�
j, k ∈ Rs(i)

j ≠ k

�
�xjxk

⎞⎟⎟⎟⎟⎟⎠

− 2�

� �
j∈Rs(i)

xj)
2

� �
j∈As(i)

Bjxj

��

=
1

m2
i

�2
e

�⎛⎜⎜⎝
�

j∈Rs(i)

xj)
2

�
� + (1 − �)

�
j∈As(i)

B2
j
x2

j

�
+ (1 − �)

�
j∈Rs(i)

x2
j
− �

� �
j∈Rs(i)

xj

�2⎤⎥⎥⎦

�

�Bj

�
�2

e

m2

i

{(
�

j∈Rs(i)

xj)
2(� + (1 − �)

�
j∈As(i)

B2

j
x2

j
+ (1 − �)

�
j∈Rs(i)

x2

j

− �

� �
j∈Rs(i)

xj

�2

− �

� �
j∈As(i)

Bjxj − 1

�⎤⎥⎥⎦
= 0,

t̂i =
1

mi

[
�

j∈As(i)

yj +

⎛⎜⎜⎜⎝

�
j∈As(i)

yj

xj

⎛⎜⎜⎜⎝
1∑

j∈As(i)

1

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

� �
j∈Rs(i)

xj)

�
.

e� =
∑
i∈s

t̂i

𝜋i
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and
vM2

(
t̂i
)
= MSEio , the function of two unknowns �2

e
 and � . These unknowns can be com-

puted by the ANOVA procedure (see Valliant et al. [29]) given in Table 1.
The analysis of variance is based on the following relation

i.e. we may write,
Total sum of squares = within cluster sum of squares + between cluster sum of squares.
The ANOVA table provides two equations with the two unknowns that can be easily 

solved.

4  Simulation study

In this section, we conduct a simulation to evaluate the performance of the proposed mod-
els. Considering two populations naming Population 1 and Population 2, we have shown 
the efficacy of our models. In Population 1, we have considered data published by the 
National Afforestation and Eco-Development Board. The district-wise different types of 
wastelands (like Gullied land, scrubland, Marshy land, Salinity/ alkalinity land, etc.) with 
their area (in  km2) were published in https ://dolr.gov.in/distr ict-and-categ ory-wise-waste 
lands -year-2000. In Population 2, we have considered the data containing the study vari-
able along with a highly correlated auxiliary variable from Chutiman and Chiangpradit [9] 
(Sect. 5.2). The study area is a square grid of 20 × 20 = 400 plots. The correlation between 
the study variable and the auxiliary variable is r = 0.91.

In Population 1, we are interested in estimating the salinity wasteland areas (in  km2). 
Districts are considered here as units. The population consists of six states (Andhra 

v
(
e�
)
=

∑
i<j∈s

∑(
𝜋i𝜋j − 𝜋ij

𝜋ij

)
(

t̂i

𝜋i

−
t̂j

𝜋j

)2 +
∑
i∈s

vM2

(
t̂i
)

𝜋2
i

−
∑
i<j∈s

∑(
𝜋i𝜋j − 𝜋ij

𝜋ij

)
(
vM2

(t̂i)

𝜋2
i

+
vM2

(
t̂j
)

𝜋2
j

)

N∑
i=1

1

mi

∑
j∈A(i)

(
yj − y

)2
=

N∑
i=1

1

mi

∑
j∈A(i)

(
yj − t

)2

=

N∑
i=1

1

mi

∑
j∈A(i)

(yj − ti)
2 +

N∑
i=1

1

mi

∑
j∈A(i)

(ti − t)2

=

N∑
i=1

1

mi

∑
j∈A(i)

(yj − ti)
2 +

N∑
i=1

(ti − t)2.

Table 1  ANOVA table for a sample by adaptive sampling

*m
�

i
= number of observed units in the ith unit’s network

**m =
∑

i∈s m
�

i

Source Sum of squares Degrees of freedom Expected mean square

Between Cluster ∑n

i=1
(t̂i − t̂)2 n − 1 �2

e
(1 − �) +

��2

e

n−1

�
m −

∑
i∈s

m2

i

m

�

Within Cluster ∑n

i=1

1

mi

∑
j∈As(i)

�
yj − t̂i

�2
∑n

i=1
m

�

i
− 1 �2

e
(1 − �)

https://dolr.gov.in/district-and-category-wise-wastelands-year-2000
https://dolr.gov.in/district-and-category-wise-wastelands-year-2000
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Pradesh, Karnataka, Kerala, Tamil Nadu, Goa, and Maharashtra) of India including 86 dis-
tricts. 23 districts contain wastelands, out of those 86 districts under study.

As we are interested in estimating the salinity affected areas, the variable of interest 
y = (y1, y2, ..., y86) is defined as the area of “Salinity wasteland of the district (in  km2)” and 
yi > 0 be the “predetermined value of rarity criterion” i = 1, 2, ..., 86 . The neighborhood 
of a unit is defined here by the four surrounding districts in the east, west, north, and south 
direction, ignoring the states’ boundaries. For this purpose of study, two auxiliary variables 
x and z (strictly non-rare) are considered. “Area of the district (in  km2)” is defined as the 
auxiliary variable x which is used in prediction purpose and partially known. “Total waste-
land of the district (in  km2)” is used as a size measure variable to draw an initial sample 
from the population with an unequal probability scheme. The correlation between the study 
variable y and the auxiliary variable x is r = 0.608. We assume this data as the population 
and the population total is �Y =

∑N

i=1
yi = 1070.72 km2 . In the population, we find that 

the districts Chittoor, Kurnool, Nellore, Prakasam, Anantapur, Cuddapah, Chitradurga, and 
Chikmagalur are in the same network with its size 8. It can be said more clearly that if any 
of those districts appear in the initial sample, we need to survey all those eight districts. A 
similar finding is that the five districts Khammam, Srikakulam, Nalgonda, Vizianagaram 
and East Godavari are in the same network. All the districts of Tamil Nadu except Kan-
niyakumari have salinity wasteland and they are also in the same network of size 9. It may 
possible to have more than one unit from the same network in the initial sample. Following 
the arguments of Chaudhuri [5], the networks are considered repeatedly in the estimation 
step.

Without loss of generality, in this study, we are assuming that the districts Prakasam, 
Anantapur, Nalgonda Chitradurga, Salem, Tiruchirapalli, North Arcot and Dharmapuri are 
unobserved due to some hazardous conditions.

An initial sample of size 19 is taken from those 86 districts by Lahiri-Midzuno-Sen [15, 
19, 23] sampling strategy using the size measure variable z . Whenever an initial unit (dis-
trict) is found with the criterion of the presence of salinity, its network is selected. Suppose 
the investigator is unable to visit all the districts belonging to the network. Then the unob-
served part of the network is predicted using the proposed models as discussed in Sects. 
3.1 and 3.2.

For example, in a particular sample of size 19, two rare units may be found and auto-
matically using adaptive sampling, two networks are selected. So, we need to observe those 
networks but due to some hazardous conditions, some districts remain unobserved. In that 
situation, our proposed models work effectively.

In order to estimate the population total of the study variable y =
(
y1, y2,… , y400

)
 from 

Population 2, we have defined the rarity condition as yi > 0 i = 1, 2,… , 400 . In this popu-
lation, 57 plots contain a value of y greater than zero and form five distinct networks of size 
12, 28, 7, 5, and 2. Here the simulation study is carried out by selecting an initial sample of 
size n = 60, 80, 100, 120 according to Lahiri-Midzuno-Sen [15, 19, 23] sampling strategy. 
For this purpose, a size measure variable z is required and we have simulated the values of 
z as  zi = 20 + 4xi + �i where �i ∼ N(30, 22). Without loss of generality, we are assuming 
5 plots are unobserved in the network of size 28 and 2 plots are unobserved in the network 
of size 12. Those unobserved parts of the networks are predicted by the proposed methods.

The proposed predictors for the two models are compared with each other through 
the average length (AL), average coefficient of variance (ACV) and average coverage 
probability (ACP). The proposed predictors are also compared with Chaudhuri [5]’s 
adaptive sampling and general sampling or conventional sampling (as described in 
Sect.  2) while the unobserved situation is not turned up. For better comparison, we 
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consider the same initial sample for all the methods and the simulation is done 10,000 
times from the above population to judge the efficacy. Denoting t̂ as the unbiased esti-
mator of the population total �Y  with its unbiased variance estimator as v

(
t̂
)
 , the confi-

dence interval CI(s) is calculated for each simulated sample and we also check whether 
the CI(s) covers �Y or not. The simple difference between the two endpoints of CI(s) i.e. 
tU(s) − tL(s) is called the length of the confidence interval (“CI Length tU(s) − tL(s) ” in 
Table 2). The probability that the unknown total �Y is contained in the confidence inter-
val CI(s) =

[
tL(s), tU(s)

]
 for every s is called coverage probability (CP) of the interval. 

Suppose k intervals are found to cover the parameter �Y , the proportion k

10000
 should 

attain the desired confidence level 1 − � (here 95%). The average of the estimated 

Table 2  Estimate, estimated standard deviation, confidence interval limits of 512th simulation considering 
Population 1 (Here �

Y
= 1070.72 km

2)

* Estimated Intraclass correlation (�̂�) = 0.823224

Sample size = 19, Sampling estimator: Horvitz Thompson

Proposed model-assisted pre-
diction approach

Adaptive Sampling Conven-
tional 
sampling

Model 1
� = 0

Model 2
� ≠ 0

∗

Estimate 
(
t̂
)

1027.26 1075.24 1050.05 1130.73

Estimated St. dev.

(√
v
(
t̂
)) 310.519 207.753 167.521 395.091

tL(s) 418.642 668.044 721.709 356.351
tU(s) 1635.878 1482.355 1378.391 1905.108
CI length tU(s) − tL(s) 1217.244 814.391 656.682 1548.756

Table 3  Comparison of different models considering Population 1 (Here �
Y
= 1070.72 km

2)

* Estimated Intraclass correlation(�̂�) = 0.823224

Sample size = 19, sampling estimator: Horvitz Thompson

Proposed model-assisted predic-
tion approach

Adaptive Sampling Conven-
tional 
Sampling

Model 1
� = 0

Model 2
� ≠ 0

∗

Estimate 
(
t̂
)
 (515th simulation) 1067.09 1090.164 1028.472 1147.86

Estimated st. dev. 

(√
v
(
t̂
))

 
(515th simulation)

325.537 208.482 169.259 410.067

ACV 30.761 19.631 16.517 34.309
AL 1290.645 820.712 656.831 1610.262
ACP 97.1 62.7 73.4 100
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coefficient of variation 
⎛
⎜⎜⎝
cv = 100

�√
v(t̂)

�

t̂

⎞
⎟⎟⎠
 is called ACV. The value 

(√
v
(
t̂
))

 repre-

sents the estimated standard deviation of the estimator t̂ which is tabulated in Table 2, 

Table 3 and Table 4 as “Estimated St. Dev.
(√

v
(
t̂
))

 ”. The average length of confidence 

intervals is called AL. Usually, ACV which is less than 10% is excellent and at most 
30% is acceptable. For better understanding, a particular simulation (512th) result is 
shown in Table  2 for Population 1. Table  3 reports the simulation result across the 
10,000 samples for Population 1. Table 4 represents the simulation result with varying 
sample sizes for Population 2.

Considering Population 1 with 26.74% rare units and Table  3, the estimate of the 
salinity wasteland for the 515th simulation is 1147.86  km2 by the conventional sampling 
(method without adaptive sampling). In that case, the ACV turns out 34.309% which is 
very high. However, for Chaudhuri [5]’s adaptive sampling design ACV turns out 16.517%. 
In the presence of unobserved units, we can’t perform Chaudhuri [5]’s adaptive sampling 
design. In that case, the performances of the proposed models give us satisfactory results.

In Table 4, we have compared the results for different initial sample sizes. For each sam-
ple size, Chaudhuri [5]’s adaptive sampling performs better than the conventional sampling 
in terms of ACV, AL and ACP where all the sampled units are observed. In case of unob-
served units in the network, the performances of both the proposed models are demon-
stated. Population 2 contains 14.25% rare units. From the simulation results of Tables 3 
and 4, it is observed that Model 1 is performing better in Population 1 than Population 2 in 
terms of coverage probabilities. In terms of AL and ACV, both models perform well. The 
ACV values (in %)may be accepted upto 30 in any practical survey situation. In Population 
2, ACP value (in %) is close to 95 which is preferred. In terms of ACP, Model 2 performs 
well. ACV and AL are decreasing but ACP is increasing as the sample size increases.

5  Concluding remarks

Adaptive sampling may be an effective tool with a rare and clustered population. As the 
study variable is rare and clustered, Chaudhuri [5]’s adaptive sampling design performs 
well than the conventional sampling design (see Sect. 2) which is obvious. But these can 
be implemented only if the surveyor does not face the unobserved situation of the network 
A(i) . If the network size is exorbitantly large and surveyors are unable to capture all the 
units in the network due to some hazardous conditions, the proposed prediction models 
give a contribution to overcome such a problem. In particular, Model 2 takes into account 
the intra-class correlation present among the units of the network of a particular sampled 
unit. Through the comparison criterion ACP, ACV and AL, we have shown the efficacy of 
Model 1 and Model 2. For a clustered population, it is obvious that the units in the same 
cluster are correlated and it is termed as intraclass correlation (�) . Model 1 may be suit-
able where intraclass correlation estimate values are low. In other cases Model 2 may be 
recommended.

But the computation of the variance estimate for Model 2 is the complicated one. In 
that case, Model 1 may be a good alternative. So, we may conclude that the proposed two 
models are equally efficient and can be used in estimating rare and clustered population 
parameters.
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